
UNIVERSITY OF CALIFORNIA
Santa Barbara

Analyzing and Securing Firmware
for IoT Devices

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Nilo Redini

Committee in Charge:

Professor Giovanni Vigna, Co-Chair

Professor Christopher Kruegel, Co-chair

Professor Ben Hardekopf

December 2020

The Dissertation of
Nilo Redini is approved:

Professor Ben Hardekopf

Professor Christopher Kruegel, Co-chair

Professor Giovanni Vigna, Co-chair

November 2020

Analyzing and Securing Firmware

for IoT Devices

Copyright © 2020

by

Nilo Redini

iii

Acknowledgements

I want to thank my family, my friends, and all the people who have been close to me

during this incredible journey. In particular, I want to thank my parents, who have

never stopped believing in me and supporting me in all of my decisions. My brother

Matteo and my sister-in-law Antonella, for all the good times and laughs during all

these years, and all the stolen hair straighteners. My friends Alessandro, Serena, and

Arjola for being “virtually” close to me during the hard times. I want to thank Yanick,

Machiry, Britt, Francesco, Margery, Romain, and Mikel for all the talks and nights

spent together. A special thanks go to Antonio Bianchi, who took me aside on my

first day at UCSB and explained to me how to be a successful Ph.D. student. I want to

thank my high school teacher professor Domenico Iracá for making me fall in love with

computer science, and Tommaso Cucinotta for introducing me to the world of research.

I want to thank my advisors, Giovanni Vigna and Christopher Kruegel, for being the

best advisors I could ask for and for teaching me how to be an independent researcher

and critical thinker. Finally, I want to thank my grandma Alda, to whom, if I could, I

would just say “nonna, alla fine in California ci son finito per davvero”.

iv

Curriculum Vitæ

Nilo Redini

Education

2014 – 2020 PhD in Computer Science

University of California, Santa Barbara

2010 – 2013 Master’s Degree in Computer Engineering

Università di Pisa, Pisa, Italy

2005 – 2010 Bachelor’s Degree in Computer Engineering

Università di Pisa, Pisa, Italy

Experience

Mar 2020 – Jun 2020 Interim Engineering Intern, Qualcomm, CA

Advisor: Murali Somanchy

Apr 2019 – Jun 2019 Visiting PhD Student, University of Pennsylvania, PA

Advisor: Prof. Mayur Naik

Mar 2013 – Aug 2013 Research Scholarship, Università di Pisa, Italy

Advisor: Prof. Luciano Lenzini

Jul 2012 – Nov 2012 Interim Engineering Intern, Alcatel-Lucent Bell-Labs, Ireland

Advisor: Prof. Tommaso Cucinotta

v

Publications

1. Nilo Redini, Andrea Continella, Dipanjan Das, Giulio De Pasquale, Noah Spahn, Aravind

Machiry, Antonio Bianchi, Christopher Kruegel, Giovanni Vigna, “DIANE: Identifying

Fuzzing Triggers in Apps to Generate Under-constrained Inputs for IoT Devices”. In

Proceedings of the IEEE Symposium on Security & Privacy (S&P), May, 2021.

2. Nilo Redini, Aravind Machiry, Ruoyu Wang, Chad Spensky, Andrea Continella, Yan

Shoshitaishvili, Christopher Kruegel, Giovanni Vigna, “KARONTE: Detecting Insecure

Multi-binary Interactions in Embedded Firmware”. In Proceedings of the IEEE Sympo-

sium on Security & Privacy (S&P), May, 2020.

3. Aravind Machiry, Nilo Redini, Eric Cammellini, Christopher Kruegel, Giovanni Vigna,

“SPIDER: Enabling Fast Patch Propagation in Related Software Repositories”. In Pro-

ceedings of the IEEE Symposium on Security & Privacy (S&P), May, 2020.

4. Eric Gustafson, Marius Muench, Chad Spensky, Nilo Redini, Aravind Machiry, Yan-

ick Fratantonio, Davide Balzarotti, Aurelien Francillon, Yung Ryn Choe, Christopher

Kruegel, Giovanni Vigna, “Toward the Analysis of Embedded Firmware through Auto-

mated Re-hosting”. Symposium on Research in Attacks, Intrusion, and Defenses (RAID),

Beijing, Sep, 2019.

5. Nilo Redini, Ruoyu Wang, Aravind Machiry, Yan Shoshitaishvili, Giovanni Vigna, Christo-

pher Kruegel, “Bintrimmer: Towards Static Binary Debloating Through Abstract Inter-

vi

pretation”. In Proceedings of the Conference on Detection of Intrusions and Malware and

Vulnerability Assessment (DIMVA), Aug, 2019.

6. Aravind Machiry, Nilo Redini, Eric Gustafson, Hojjat Aghakhani, Christopher Kruegel,

Giovanni Vigna, “Towards Automatically Generating a Sound and Complete Dataset for

Evaluating Static Analysis Tools”. Workshop on Binary Analysis Research (BAR), San

Diego, Feb, 2019.

7. Aravind Machiry, Nilo Redini, Eric Gustafson, Yanick Fratantonio, Yung Ryn Choe,

Christopher Kruegel, Giovanni Vigna, “Using Loops For Malware Classification Resilient

to Feature-unaware Perturbations”. Proceedings of the 34th Annual Computer Security

Applications Conference (ACSAC), San Juan, Dec, 2018.

8. Nilo Redini, Aravind Machiry, Dipanjan Das, Yanick Fratantonio, Antonio Bianchi, Eric

Gustafson, Yan Shoshitaishvili, Christopher Kruegel, Giovanni Vigna, “BootStomp: On

the Security of Bootloaders in Mobile Devices”. 26th USENIX Security Symposium

(USENIX), Vancouver, Aug, 2017.

9. Francesco Disperati, Dario Grassini, Enrico Gregori, Alessandro Improta, Luciano Lenzini,

Davide Pellegrino, Nilo Redini, “SmartProbe: a Bottleneck Capacity Estimation Tool

for Smartphones”. IEEE International Conference on Green Computing and Communi-

cations and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing

(GreenCom-iThings-CPSCom), Beijing, 2013.

vii

10. Tommaso Cucinotta, Gianluca Dini, Nilo Redini, “Access Control for the Pepys Internet-

wide File-System”. In Proceedings of the 7th International Workshop on Plan 9 (IWP9

2012), Dublin, Nov, 2012.

Awards

2019 First place in CSAW Embedded Security Challenge (ESC)

2013 Winner of research scholarship at Università di Pisa

2012 Winner of the “Erasmus Placement” for a paid internship in a company

of the European Union

viii

Abstract

Analyzing and Securing Firmware
for IoT Devices

Nilo Redini

Internet of Things (IoT) devices have rooted themselves in the everyday life of

billions of people. While they automate and simplify many aspects of the users’ lives,

the widespread usage of IoT devices constitutes a security concern for our modern

society. Aside from the privacy and safety implications of having a smart door lock

that could succumb to an Internet-based attack, or a smoke detector that an assailant

could disable by connecting to it from a compromised light bulb, vulnerabilities in

these devices have wider implications. Recent large-scale attacks have shown that the

sheer number of Internet-connected IoT devices poses a severe threat to the Internet

infrastructure. The most prominent example is represented by the Mirai botnet that, in

2016, compromised millions of devices and leveraged them in denial-of-service attacks

to disrupt core Internet services and shut down websites.

For these reasons, it is of crucial importance to assess the security of IoT devices.

Analyzing and securing IoT devices present different and specific challenges than ana-

lyzing and securing traditional desktop computers. The main reason is that IoT devices

are manufactured by a plethora of different vendors, which often use vendor-specific

ix

hardware and software (or firmware) for their products. Given the heterogeneity and

widespread usage of IoT devices, we need novel, automated, and scalable solutions

able to improve the security of these devices.

During my Ph.D., I approached the problem of securing IoT devices from different

angles and using different strategies, which I present in detail in this dissertation. First,

I introduce the IoT landscape, with particular attention to the peculiarities that charac-

terize embedded firmware. Then, I present in detail my work that advances the state

of the art of firmware security. In particular, I present (i) BOOTSTOMP, a novel tool

to find bugs in bootloaders for embedded devices, (ii) KARONTE, a novel static analy-

sis approach to track data flows across the different components of a firmware sample

to precisely uncover security vulnerabilities, (iii) BINTRIMMER, a tool that relies on

a novel abstract domain (called Signedness-Agnostic Strided Interval) to perform code

debloating on binaries, thus decreasing the attack surface that could be used by an at-

tacker to harm end-users, and, finally, (iv) DIANE, a novel approach to fuzz IoT devices

that leverages the logic of the device’s companion app (i.e., the application commonly

used to interact with IoT devices). I evaluate the performance of the proposed ap-

proaches and show that the developed tools are effective in improving the security of

firmware for IoT devices.

x

Contents

Acknowledgements iv

Curriculum Vitæ v

Abstract ix

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Security of IoT devices . 4

2 BootStomp: A Bootloader Analyzer 13
2.1 Bootloaders in Theory . 15

2.1.1 TEEs and TrustZone . 15
2.1.2 The Trusted Boot Process 17
2.1.3 Verified Boot on Android 20

2.2 Bootloaders in Practice . 22
2.2.1 Bootloader Implementations 24

2.3 Unlocking Bootloaders . 27
2.3.1 Unlocking vs Anti-Theft . 29

2.4 Attacking Bootloaders . 30
2.5 BOOTSTOMP . 34

2.5.1 Design . 36
2.5.2 Seed Identification . 38
2.5.3 Sink Identification . 41
2.5.4 Taint Tracking . 43

xi

2.6 Evaluation . 48
2.6.1 Dataset . 48
2.6.2 Finding Memory Corruption 49
2.6.3 Analyzing (In)Secure State Storage 55
2.6.4 Discussion . 57

2.7 Mitigations . 59

3 KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware 64
3.1 IoT Attacker Model . 65
3.2 Firmware Complexity . 66
3.3 IPC in IoT Firmware . 69
3.4 KARONTE . 71
3.5 Border Binaries Discovery . 73
3.6 Binary Dependency Graph . 76

3.6.1 Communication Paradigm Finders 77
3.6.2 Building the BDG . 78

3.7 Static Taint Analysis . 82
3.8 Multi-binary Data-flow Analysis . 85
3.9 Insecure Interactions Detection . 88
3.10 KARONTE Implementaion Details 89
3.11 Functions Identification . 90
3.12 Border Binaries Discovery . 91
3.13 Communication Paradigm Finders 93
3.14 Binary Dependency Graph Algorithm 98
3.15 Static Taint Analysis . 99
3.16 Multi-binary Data-flow Analysis . 100
3.17 Vulnerability Example . 101
3.18 Discussion . 104
3.19 Evaluation . 105

3.19.1 Datasets . 106
3.19.2 Border Binaries Discovery 108
3.19.3 Binary Dependency Graph 109
3.19.4 Insecure Interactions Detection 110
3.19.5 Comparative Evaluation . 112
3.19.6 Large-scale Scalability Assessment 115
3.19.7 Verifiability . 121

xii

4 BINTRIMMER: Towards Static Binary Debloating Through Abstract In-
terpretation 123
4.1 Background and Motivation . 124
4.2 Overview . 127

4.2.1 Iterative CFG Refinement 128
4.2.2 Program Debloating . 130

4.3 Signedness-Agnostic Strided Intervals 131
4.3.1 Definition . 132

4.4 Termination . 142
4.5 Signedness-Agnostic Strided Interval Operations 145

4.5.1 Addition and Subtraction 146
4.5.2 Multiplication, Division and Modulus 147
4.5.3 Bitwise operations . 149
4.5.4 Truncate . 155
4.5.5 Extension operations . 156

4.6 Discussion . 158
4.7 Evaluation . 159

4.7.1 Signedness-Agnostic Strided Intervals 160
4.7.2 BINTRIMMER . 164

5 DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-constrained
Inputs for IoT Devices 167
5.1 Motivation . 169
5.2 DIANE . 173

5.2.1 Fuzzing Trigger Identification 175
5.2.2 Fuzzing . 185

5.3 DIANE Implementation Details . 189
5.3.1 Static Analysis . 189
5.3.2 Dynamic Analysis . 189
5.3.3 Hybrid Analysis . 191

5.4 Experimental Evaluation . 192
5.4.1 Dataset & Environment Setup 194
5.4.2 Fuzzing Trigger Identification 196
5.4.3 Vulnerability Finding . 200
5.4.4 DIANE vs. IoTFuzzer . 202
5.4.5 App-side Sanitization and Fuzzing Triggers 207
5.4.6 DIANE vs. Network-Level Fuzzing 211
5.4.7 Case Study: Insteon HD Wifi Camera 212
5.4.8 Runtime Performance . 215

xiii

5.4.9 Quantifying Required Human Effort 215
5.5 Limitations and Future Work . 217

6 Related Work 220

7 Conclusions 226

Bibliography 229

xiv

List of Figures

1.1 Typical IoT deployment. 2

2.1 Overview of the Trusted/Verified Boot. 17
2.2 BOOTSTOMP overview. 37
2.3 Example of emmc reading function detected by BOOTSTOMP. 39
2.4 Taint propagation example. 43
2.5 Implementation of the (vulnerable) unlock functionality in Huawei’s
bootloader. 57

3.1 Decompiled code of a network-facing program of a real firmware sample. 67
3.2 Decompiled code of a handler binary that contains two bugs. However,
only one bug is reachable by an attacker. 69
3.3 KARONTE overview. 74
3.4 Path prioritization and taint dependencies use case. 83
3.5 Snippet of code that uses a data key to set a data value into a local
structure. 97
3.6 Decompiled snippet of code of httpd. 102
3.7 Decompiled snippet of code of fileaccess.cgi. 103
3.8 Performance evaluation of KARONTE. 113
3.9 Distribution of the sizes of the BDGs of our firmware samples, and
number of paths in an average binary in the BDG. 115
3.10 Distribution of the number of timeouts triggered during the symbolic
exploration with and without our path prioritization. 116

4.1 Precisely determining variable values is crucial to recover the ideal CFG. 125
4.2 Iterative CFG Refinement Algorithm. 128
4.3 Signed-Agnostic Strided Interval. 128
4.4 Possible relative positions of two SASIs. 136

xv

4.5 Join in number circle. 142
4.6 Possible joins for an existential join operator. 144
4.7 Source code evaluation of SASI. 162
4.8 Binary evaluation of SASI. 163

5.1 Snippet of code that implements a sanity check. 170
5.2 DIANE overview. 175
5.3 Example of a simple Transformation Data Chains found on the August
Smart Lock. 184
5.4 Fuzzing function found by IoTFuzzer for the Insteon camera. 205
5.5 Fuzzing function found by IoTFuzzer for the Foscam cameras com-
panion app. 206
5.6 Snippet of code for the Insteon Camera app. 212
5.7 Simplified snippet of code from Insteon firmware. 214
5.8 Average and standard deviation of DIANE’s execution time. 217

xvi

List of Tables

2.1 Bootloader features, and the Exception Level they occur in. 25
2.2 BOOTSTOMP vulnerabilities evaluation. 49
2.3 BOOTSTOMP unlocking functionality evaluation. 55

3.1 Analysis results on current-version firmware samples. 106
3.2 Comparative evaluation. 108
3.3 Large scale evaluation of KARONTE. 122

4.1 BINTRIMMER Results. 166

5.1 Dataset of IoT devices. 193
5.2 Summary and features of our dataset of IoT companion apps. 195
5.3 Summary of the bugs detected by DIANE, IoTFuzzer, and by existing
network fuzzers. 196

xvii

Chapter 1

Introduction

The term Internet of Things (IoT) was first introduced in 1999 by Kevin Ashton, as a

way to describe a system where the physical world is connected to the Internet through

ubiquitous sensors [6]. In the literature, the term Internet of Things was later general-

ized and defined as the pervasive presence around us of a variety of Internet-connected

devices (or things) – such as Radio-Frequency Identification (RFID) tags, sensors, mo-

bile phones, etc. – which interact with each other to reach common goals [42].

These devices (called IoT devices) act to automate people’s daily routines and mun-

dane tasks to increase individual efficiency and productivity [33,106,113,144]. As mar-

ket research suggests, the adoption of IoT devices is continuously growing, and their

widespread usage will enable industries, and more in general the world, with opportu-

nities that, until now, were deemed impossible. For instance, an increasing number of

American urban areas are already moving toward the Smart City [146] model, where

1

Chapter 1. Introduction

Figure 1.1: Typical IoT deployment.

public administrations use the data generated by IoT devices to provide citizens with

new services (e.g., car-sharing services [69]).

IoT Ecosystem. A typical IoT setup is depicted in Figure 1.1. Generally, an IoT

device is accompanied by its companion app, which is the mobile application used to

configure and interact with the device. The companion app can communicate directly

with the device, indirectly through a hub, or indirectly through the vendor’s cloud. The

first approach is by far the most employed: a recent survey [3] showed that out of

45 analyzed IoT devices, 43 (95.56%) use a local connection (either wired, WiFi, or

Bluetooth) to communicate with the companion app, at least during their pairing phase.

Architecturally, IoT devices are generally composed of a main printed circuit board

(or PCB) and one or more external peripherals (e.g., the motor of a smart lock or a

camera). In turn, the PCB is composed of several different chips – such as low-power

microcontrollers, BLE SoC (low-energy Bluetooth integrated circuit), external EPROM

2

Chapter 1. Introduction

memories, and peripherals’ controllers – that exchange data with the physical world and

manage the device’s peripherals accordingly. IoT devices usually use RISC processors,

predominantly ARM, as their principal microcontrollers. Unlike traditional computers

where Intel and AMD are the leading processor manufacturers, ARM does not produce

processors, rather it provides specifications (and support) for companies to manufacture

chips that are compliant with the ARM instruction set architecture. However, as mi-

crocontroller manufacturers do not need to follow ARM guidelines closely, the actual

hardware mounted on IoT devices is very diverse, and presents different characteristics.

Similarly, IoT manufacturers usually rely on proprietary software (or firmware) to

manage the device’s specific hardware. This software is either a single small program

that manages directly the device’s peripherals without relying on any abstraction layers

(these systems are usually referred to as “bare-metal” systems), or a more complex

system made up of different components that interact to accomplish various tasks. The

latter type of firmware can either be a Linux distribution packaged with a collection of

different (vendor-specific) binaries, or a large single-binary embedded OS (commonly

referred to as “blob firmware”) composed of a set of different modules – a classic

example of blob firmware is a set of applications packaged together with a real-time

operating system, such as VxWorks [126]. In general, Linux-based firmware is, by far,

the most ubiquitous: a large-scale experiment analyzed tens of thousands of firmware

samples and found that 86% of them were Linux-based [27]. Similar to other Linux-

3

Chapter 1. Introduction

based systems, Linux-based firmware images include a large number of interdependent

binaries.

Overall, the hardware and software that govern IoT devices are very diverse, which,

in recent years, led the security research community to focus on the IoT ecosystem.

1.1 Security of IoT devices

Given their large adoption and diversity, the security of IoT devices is of crucial

importance. Unfortunately, very much like their popularity, the number of reported

security and privacy violations concerning these devices is increasing too. According

to the 2020 IBM X-Force Threat Intelligence Index [60], attacks against these systems

have increased over 2000% since 2018.

Cyber-attacks on IoT devices might be successful mainly because of three reasons:

(1) users’ bad practices, (2) vendors’ bad practices, and (3) bugs in the firmware running

on these IoT devices.

A study conducted by Cui and Stolfo [32] on an Internet-scale active probing of IoT

devices, showed that around 540,000 embedded devices (13% of all discovered embed-

ded devices) use default credentials and that these devices belong to various realms

such as enterprises, government organizations, Internet Service Providers (ISPs), ed-

ucational institutions, and private networks [90]. Unfortunately, vendors are prone to

4

Chapter 1. Introduction

adopt unsafe practices too. Costin et al. [27] performed a study over 32,000 firmware

samples and recovered the login credentials for 681 distinct firmware images, which

belonged to 27 different vendors. Furthermore, they successfully extracted 109 pri-

vate RSA keys from 428 firmware samples, and 56 self-signed certificates out of 344

firmware samples. In total, they were able to obtain 41 self-signed SSL certificates

together with their corresponding private RSA keys.

Although it is hard to estimate the number of IoT devices whose firmware is affected

by security-related flaws (e.g., buffer overflows), the numbers are not encouraging.

In June 2020, the Israeli security firm JSOF revealed a collection of vulnerabilities

called Ripple20, which could be exploited to compromise more than 100,000 Internet-

connected devices [139].

These vulnerabilities undermine the security of our modern society. For instance, in

2016, the Mirai botnet [73] infected hundreds of thousands of vulnerable IoT devices

to disrupt core Internet services and shut down high-profile websites such as Twitter

and Netflix. In order to guarantee the safety and privacy of our smart world, we need

to secure IoT devices. Though the literature contains many approaches (based on both

static and dynamic analyses) to find flaws in computer programs, given the diversity of

the IoT ecosystem, these approaches rarely can be adapted to the firmware running on

IoT devices.

5

Chapter 1. Introduction

Dynamic Analysis. Gray-box fuzzing is the most commonly employed dynamic anal-

ysis technique to find bugs in software [52, 71, 82, 103, 104, 120, 133]. However, this

fuzzing technique usually requires access to the runtime state of the target program,

thus making approaches based on gray-box fuzzing unsuitable for IoT devices, as most

devices are shipped with disabled hardware debug capabilities [80,86]. For this reason,

black-box approaches, which do not require access to a device’s firmware, are usually

employed in the IoT domain. However, the existing black-box approaches [66,68,141]

require knowledge about the data format accepted by the device under analysis. Conse-

quently, given the heterogeneity and lack of documentation of the protocols adopted by

IoT devices, these approaches are not readily applicable. Other approaches have pro-

posed to fuzz IoT devices by emulating the corresponding firmware [20, 50, 119, 150].

Unfortunately, a faithful emulation of a firmware image is a hard problem, and these

approaches have scalability issues. In fact, during the booting process of an IoT device,

the firmware usually checks the status of the device’s peripherals, and, if a peripheral

is not detected, the firmware enters into a fault state and does not proceed any further.

Static Analysis. The diversity of IoT devices and their software poses a limitation to the

scalability and efficiency of traditional vulnerability-finding approaches. As a result,

researchers usually focus their work on specific hardware architectures [34,50], or spe-

cific vulnerability types [35,39,77,92,115]. In recent years, researchers have proposed

techniques to automatically identify vulnerabilities in firmware distributions, generally

6

Chapter 1. Introduction

by unpacking them into components, which are then analyzed in isolation [20, 115].

Nonetheless, despite these advances in vulnerability discovery techniques, state-of-the-

art approaches are insufficient, and vulnerabilities persist. A key reason behind the

insufficiency of current techniques is that embedded devices are made up of intercon-

nected components. For example, embedded devices often expose web-based interfaces

comprised of a web server and various back-end applications. In this architecture, any

given piece of functionality often relies on the execution of multiple programs [28],

e.g., the web server that accepts an HTTP request, a local binary that is summoned

by the web server (e.g., using sockets), and an external command that is executed by

the local binary to accomplish the request. Each interacting firmware component (the

web server, the back-end applications, and other helper programs) can make different

assumptions about the data being shared, and inconsistencies can manifest as secu-

rity vulnerabilities. Precisely detecting these insecure multi-binary interactions among

the different components of a firmware sample is challenging. Program analysis ap-

proaches that consider each component in isolation, without accounting for the internal

flow of data, yield suboptimal results, as they (i) ignore meaningful constraints imposed

by components in the course of inter-binary communication, (ii) cannot effectively dif-

ferentiate between attacker-controlled and non-attacker-controlled sources of input, and

(iii) might uncover only superficial bugs. Thus, an effective firmware analysis must take

into account multiple binaries, and reason about the data they share.

7

Chapter 1. Introduction

For all these reasons, we need novel solutions able to assess and improve the secu-

rity of IoT devices.

Contributions. In this dissertation, I present my work to advance the state of the art of

firmware security. We approach the problem of securing firmware from different angles

(e.g., static versus dynamic analyses) and application layers. In particular, in my work,

I studied the security of firmware for IoT devices by considering the different software

layers present in these devices: from bootloaders to user applications (i.e., programs

that elaborate the data received from users). Each class of software presents different

challenges that we discuss in this dissertation. In this dissertation, I will demonstrate

that by leveraging the structure of firmware samples and the program practices adopted

by firmware developers, it is possible to improve the effectiveness of vulnerability dis-

covery based on static analyses. In summary, I make the following contributions:

• We perform a study of popular bootloaders present on mobile devices, and com-

pare the security properties they implement with those suggested by ARM and

Google. To do this, we develop a novel combination of program analysis tech-

niques, including static analysis as well as symbolic execution, to detect vulner-

abilities in bootloader implementations that can be triggered from the high-level

OS. Then, we implement this technique in a tool, called BOOTSTOMP 1, to eval-

uate modern, real-world bootloaders, and find six previously-unknown critical

1https://github.com/ucsb-seclab/bootstomp

8

https://github.com/ucsb-seclab/bootstomp

Chapter 1. Introduction

vulnerabilities (which could lead to persistent compromise of the device) as well

as two unlock-bypass vulnerabilities. Finally, we propose mitigations against

such attacks, which are trivial to retrofit into existing implementations.

• We design novel combinations of static analysis techniques to perform multi-

binary taint analysis. Then, we propose KARONTE 2, a novel static analysis

approach to identify insecure interactions between binaries. KARONTE radi-

cally reduces the number of false positives, making real-world firmware analysis

practical. We implement and evaluate our prototype of KARONTE on 53 real-

world firmware samples, showing that our tool can successfully propagate taint

information across multiple binaries, resulting in the discovery of 46 unknown

(zero-day) bugs, and producing few false positives. Finally, we leverage a bigger

dataset of 899 firmware samples to assess the performance of our tool.

• I propose the first sound, test-case agnostic program debloating approach for bi-

naries. We design and formalize a novel signedness-agnostic abstract domain,

which outclasses the related work in terms of both soundness and precision, and

implement it in two different frameworks: LLVM 3 (for source code analysis)

and angr 4 (for binary analysis). We implemented our approach in a prototype,

called BINTRIMMER, that using iterative value-flow refinement, recovers a com-

2https://github.com/ucsb-seclab/karonte
3https://github.com/ucsb-seclab/sasi
4https://github.com/angr/claripy/blob/master/claripy

9

https://github.com/ucsb-seclab/karonte
https://github.com/ucsb-seclab/sasi
https://github.com/angr/claripy/blob/master/claripy

Chapter 1. Introduction

plete and precise CFG from a binary, identifies unreachable code, and removes it.

We perform a preliminary evaluation of BINTRIMMER on real-world applications

and show that our approach is effective at program debloating. We extensively

evaluate our abstract domain, SASI, against domains proposed in related work

on both source code and binary files.

• I propose a novel approach to fuzz IoT devices to produce valid yet under-

constrained fuzzing inputs that penetrate deeper into the device’s firmware code.

To do this, we design a novel combination of static and dynamic analyses to find

and fuzz specific functions, within the device’s companion app, that are located

between the app-side validation logic and the data-encoding functions. These

functions, which we call fuzzing triggers, when invoked generate inputs that are

not constrained by app-side validation, and, at the same time, are well-structured,

so that they are not immediately discarded by the fuzzed IoT device. We lever-

age our approach to implement DIANE 5, an automated black-box fuzzer for IoT

devices. We evaluate our tool against 11 popular, real-world IoT devices. In

our experiments, we show that by identifying fuzzing triggers and using them to

generate inputs for the analyzed devices, we can effectively discover vulnerabil-

ities. Specifically, we found 11 vulnerabilities in 5 different devices, 9 of which

were previously unknown. Finally, we show that, for a majority of IoT devices

5https://github.com/ucsb-seclab/diane

10

https://github.com/ucsb-seclab/diane

Chapter 1. Introduction

and companion apps, identifying and leveraging fuzzing triggers is essential to

generate bug-triggering inputs.

The remaining of this dissertation is structured as follows: In Chapter 2, I present

BOOTSTOMP: a novel tool to find bugs in bootloaders for embedded devices. BOOT-

STOMP uses a novel combination of static analysis techniques and under-constrained

symbolic execution to build a multi-tag taint analysis capable of identifying security

issues in bootloaders for embedded systems. We ran BOOTSTOMP against five boot-

loaders for Android OS, and we were able to identify six previously unknown vulnera-

bilities, as well as rediscover one that had been previously reported (CVE-2014-9798).

In Chapter 3, I present KARONTE, a novel static analysis approach to track data

flows across the different components of a firmware sample to precisely uncover se-

curity vulnerabilities. KARONTE is based on the intuition that binaries communicate

using a finite set of common Inter-Process Communication (IPC) paradigms, and it

leverages commonalities in these paradigms to detect where user input is introduced

into the firmware sample and to identify interactions between the various components.

In our experiments, we show that our approach successfully identifies data flows across

different firmware components, which allowed us to discover 46 zero-day software

bugs, and the rediscovery of another five n-days bugs.

In Chapter 4, I present a novel abstract domain, which we call the Signedness-

Agnostic Strided Interval (or SASI) domain, specifically designed to achieve sound

11

Chapter 1. Introduction

program debloating on binaries (such as firmware samples). We used this novel ab-

stract domain to build a tool, called BINTRIMMER, that soundly identifies and removes

unused code within binaries. In our evaluation, we show that our tool soundly removed

almost 36% of the code, which contained around the 25% of ROP gadgets contained in

the original program.

In Chapter 5, I present a novel approach to fuzz IoT devices by leveraging the

companion app (i.e., the mobile application typically used to control an IoT device)

to generate well-structured fuzzing inputs. Our approach aims at covering those cases

where the firmware governing a certain device is not available. As we see in this Chap-

ter, DIANE analyzed 11 popular IoT devices, and identified 11 bugs, 9 of which are

zero days.

Chapter 6 contains the related work behind the work presented in this dissertation,

and, finally, Chapter 7 contains the conclusions drawn from my work.

12

Chapter 2

BootStomp: A Bootloader Analyzer

In this Chapter, we investigate the security in both the design and implementation

of embedded bootloaders. A bootloader is a particular software of a firmware image

that is responsible for initializing the device’s memory and peripherals when a device is

switched on. To assure the integrity of embedded devices, vendors have implemented

a string of inter-dependent mechanisms aimed at removing the possibility of persistent

compromise from the device. Known as “Trusted Boot” [41] or “Verified Boot” [46],

these mechanisms rely on the idea of a Chain of Trust (CoT) to validate each software

component that the system loads as it begins executing code. This procedure (called

booting process) is performed through one or more stages by the aforementioned ded-

icated software components called bootloaders. Bootloaders verify cryptographically

that each stage, from a Hardware Root of Trust through the device’s file system, is both

unmodified and authorized by the hardware manufacturer. Any unverified modification

of the various bootloader components, system kernel, or file system image should re-

13

Chapter 2. BootStomp: A Bootloader Analyzer

sult in the device being rendered unusable. Ideally, this is an uncircumventable, rigid

process, removing any possibility of compromise, even when attackers can achieve ar-

bitrary code execution on the high-level operating system (e.g., Android). However,

hardware vendors are given a great amount of discretion when implementing these

bootloaders, leading to variations in both the security properties they enforce and the

size of the attack surface available to an adversary. Unfortunately, analyzing the code

of bootloaders to locate vulnerabilities represents a worst-case scenario for security an-

alysts. Bootloaders are typically closed-source [95], proprietary programs, and tend to

lack typical metadata (such as program headers or debugging symbols) found in normal

programs. By their very nature, bootloaders are tightly coupled with hardware, making

dynamic analysis outside of the often uncooperative target platform impractical. Man-

ual reverse-engineering is also tedious, as bootloaders typically do not use system calls

or well-known libraries, leaving few semantic hints for an analyst to follow.

We examine bootloaders from four popular manufacturers, and discuss the stan-

dards and design principles that they strive to achieve. Then, I present BOOTSTOMP:

a multi-tag taint analysis resulting from a novel combination of static analyses and dy-

namic symbolic execution, designed to locate problematic areas where input from an

attacker in control of the OS can compromise the bootloader’s execution, or its security

features. Using our tool, we found six previously-unknown vulnerabilities (of which

five have been confirmed by the respective vendors), as well as rediscover one that had

14

Chapter 2. BootStomp: A Bootloader Analyzer

been previously reported. Some of these vulnerabilities would allow an attacker to exe-

cute arbitrary code as part of the bootloader, or to perform permanent denial-of-service

attacks. Our tool also identified two vulnerabilities that can be leveraged by an attacker

with root privileges on the OS to unlock the device, thus allowing the attacker to load

a custom OS without the user’s consent. We conclude by proposing simple mitigation

steps that can be implemented by manufacturers to safeguard the bootloader and OS

from all of the discovered attacks, using already-deployed hardware features.

2.1 Bootloaders in Theory

Today’s mobile devices incorporate a number of security features aimed at safe-

guarding the confidentiality, integrity, and availability of users’ devices and data. In

this Section, we discuss Trusted Execution Environments, which allow for isolated

execution of privileged code, and Trusted Boot, aimed at ensuring the integrity and

provenance of code, both inside and outside of TEEs.

2.1.1 TEEs and TrustZone

A Trusted Execution Environment (TEE) is the notion of separating the execution

of security-critical (“trusted”) code from that of the traditional operating system (“un-

trusted”) code. Ideally, this isolation is enforced using hardware, such that even in

15

Chapter 2. BootStomp: A Bootloader Analyzer

the event the un-trusted OS is completely compromised, the data and code in the TEE

remain unaffected.

Modern ARM processors, found in almost all mobile phones sold today, implement

TrustZone [5], which provides a TEE with hardware isolation enforced by the archi-

tecture. When booted, the primary CPU creates two “worlds”–known as the “secure”

world and “non-secure” world, loads the un-trusted OS (such as Android) into the non-

secure world, and a vendor-specific trusted OS into the secure world. The trusted OS

provides various cryptographic services, guards access to privileged hardware, and, in

recent implementations, can be used to verify the integrity of the un-trusted OS while

it is running. The un-trusted kernel accesses these commands by issuing the Secure

Monitor Call (SMC) instruction, which both triggers the world-switch operation, and

submits a command the Trusted OS and its services should execute.

ARM Exception Levels (EL). In addition to being in either the secure or non-secure

world, ARM processors support “Exception Levels,” which define the amount of privi-

lege to various registers and hardware features the executing code has. The 64-bit ARM

architecture defines four such levels, EL0-EL3. EL0 and EL1 map directly to the tradi-

tional notion of “user-mode” and “kernel mode,” and are used for running unprivileged

user applications and standard OS kernels respectively. EL2 is used for implementing

hypervisors and virtualization, and EL3 implements the Secure Monitor, the most priv-

ileged code used to facilitate the world-switch between secure and non-secure. During

16

Chapter 2. BootStomp: A Bootloader Analyzer

BL1/BootROM

BL2 BL31

Trusted OS (tz) Trusted Apps

Android Kernel
(boot)

BL33 (aboot)

Android Framework/Apps
(system/data)

Peripheral
Firmware (radio)

Secure World
Non-Secure World

EL3 EL1 EL0

if UNLOCKED,
skip verification

Load and Verify

Figure 2.1: Overview of the Trusted/Verified Boot implementation according to the ARM and Google
specifications. Between parentheses the name of the internal storage partition where the code is located
in a typical implementation.

the boot process described below, the initial stages, until the non-secure world boot-

loader is created, runs at EL3.

2.1.2 The Trusted Boot Process

In a traditional PC environment, the bootloader’s job is to facilitate the location and

loading of code, across various media and in various formats, by any means necessary.

However, in modern devices, particularly mobile devices, this focus has shifted from

merely loading code to a primary role in the security and integrity of the device. To help

limit the impact of malicious code, its job is to verify both the integrity and provenance

of the software that it directly executes.

As with the traditional PC boot process, where a BIOS loaded from a ROM chip

would load a secondary bootloader from the hard disk, mobile bootloaders also contain

17

Chapter 2. BootStomp: A Bootloader Analyzer

a chain of such loaders. Each one must, in turn, verify the integrity of the next one,

creating a Chain of Trust (CoT).

On ARM-based systems, this secured boot process is known as Trusted Boot and is

detailed in the ARM Trusted Board Boot Requirements (TBBR) specification. While

this document is only available to ARM’s hardware partners, an open-source reference

implementation that conforms to the standard is available [41].

While this standard, and even the reference implementation, does leave significant

room for platform-specific operations, such as initialization of hardware peripherals,

implementations tend to follow the same basic structure. One important aspect is the

Root of Trust (RoT), which constitutes the assumptions about secure code and data

that the device makes. In ARM, this is defined to be 1) the presence of a “burned-

in,” tamper-proof public-key from the hardware manufacturer that is used to verify

subsequent stages, and 2) the very first bootloader stage being located in read-only

storage.

While manufacturers are free to customize the Trusted Boot process when creating

their implementations, ARM’s reference implementation serves as an example of how

the process should proceed. The boot process for the ARM Trusted Firmware occurs in

the following steps, as illustrated in Figure 2.1.

1. The CPU powers on, and loads the first stage bootloader from read-only storage.

18

Chapter 2. BootStomp: A Bootloader Analyzer

2. This first stage, known as BL1, Primary Boot Loader (PBL), or BootROM, per-

forms any necessary initialization to locate the next stage from its storage, loads

it into memory, verifies its integrity using the Root of Trust Public Key (ROTPK),

and if this is successful, executes it. Since it is on space-restricted read-only me-

dia, its functionality is extremely limited.

3. BL2, also known as the Secondary Boot Loader (SBL) is responsible for creating

the secure and non-secure worlds and defining the memory permissions that en-

force this isolation. It then locates and loads into memory up to three third-stage

bootloaders, depending on the manufacturer’s configuration. These run at each

of the EL3, EL2, and EL1 levels, and are responsible for setting up the Secure

Monitor, a hypervisor (if present), and the final-stage OS bootloader.

4. BL2 then executes BL31, the loader running at EL3, which is responsible for

configuring various hardware services for the trusted and un-trusted OSes, and

establishing the mechanism used to send commands between the two worlds. It

then executes the BL32 loader, if present, which will eventually execute BL33.

5. BL33 is responsible for locating and verifying the non-secure OS kernel. Exactly

how this is done is OS-dependent. This loader runs with the same privilege as

the OS itself, at EL1.

Next, we detail extensions to this process developed for the Android ecosystem.

19

Chapter 2. BootStomp: A Bootloader Analyzer

2.1.3 Verified Boot on Android

ARM’s Trusted Boot standard only specifies stages of the boot process up to the

point at which the OS-specific boot loader is executed. For devices running Android,

Google provides a set of guidelines for Verified Boot [46], which describes high-level

functionality an Android bootloader should perform.

Unlike the previous stages, the Android bootloader provides more functionality than

just ensuring integrity and loading code. It also allows for the user or OS to elect to

boot into a special recovery partition, which deploys firmware updates and performs

factory reset operations. Additionally, modern Android bootloaders also participate

in enabling full-disk encryption and triggering the initialization of Android-specific

TrustZone services.

Ideally, the verification of the final Android kernel to be booted would effectively

extend the Chain of Trust all the way from the initial hardware-backed key to the kernel.

However, users wishing to use their devices for development need to routinely run

kernels not signed by the device manufacturer. Therefore, Google specifies two classes

of bootloader implementations: Class A, which only run signed code, and Class B,

which allow for the user to selectively break the Chain of Trust and run unsigned code,

in a tamper-evident manner, referred to as unlocking. Devices will maintain a security

state (either LOCKED or UNLOCKED) and properties of the transition between the

20

Chapter 2. BootStomp: A Bootloader Analyzer

two states must be enforced. With regard to Class B implementations, Google requires

that:

• The bootloader itself must be verified with a hardware-backed key.

• If verification of the Android kernel with the OEM key (a key hard-coded by the

device’s manufacturer in the bootloader code) fails for any reason, a warning will

be displayed to the user for at least five seconds. Then, if the bootloader is in

the LOCKED state, the device will not boot, otherwise, if the bootloader is in the

UNLOCKED state the Android kernel will be loaded.

• The device will only transition from the LOCKED state to the UNLOCKED state if

the user first selects the “allow OEM Unlock” option from the Developer Options

menu in Android’s settings application, and then issues the Fastboot command

oem unlock, or an equivalent action for devices without Fastboot.

• When the device’s lock state changes for any reason, user-specific data will be

rendered unreadable.

Beyond the guidelines, Android bootloaders (typically those that fall into Class B)

also provide some means of rewriting partitions on internal storage over USB. Google

suggests the use of the Fastboot protocol, also utilized for the locking and unlocking

process, for this functionality.

21

Chapter 2. BootStomp: A Bootloader Analyzer

2.2 Bootloaders in Practice

While the standards and guidelines on bootloader design in Section 2.1 do cover

many important security-related aspects, a significant amount of flexibility is given to

OEMs to allow for functionality specific to their platforms. These involve both aspects

of the hardware itself, but also logical issues with managing the security state of the

device. Even though this flexibility makes it hard to reason about the actual security

properties of bootloaders, it is difficult to envision a future for which these standards

would be more precise. In fact, there are a number of technical reasons due to which

the definition of these standards cannot be as comprehensive as we would hope.

One of these technical aspects is related to peripherals and additional custom hard-

ware that is shipped with each device. While platform-specific code can be inserted at

every stage in ARM’s prototypical Trusted Boot implementation, no direction is given

as to what code should be inserted at which points in the boot process. Additionally,

initialization tasks cannot be too tightly coupled with the rest of the boot sequence, as

peripheral hardware, such as modems, may incorporate code from different vendors

and necessitate a modification of the initialization process. Furthermore, vendors of the

final devices may not be able to alter earlier stages of the boot process to add necessary

initialization code, as they may be locked to code supplied by the chip manufacturer. Fi-

nally, even aside from these issues, there are constraints on storage media. ROMs, such

22

Chapter 2. BootStomp: A Bootloader Analyzer

as those mandated for the first bootloader stage, tend to be small, and are inherently a

write-once medium, precluding their use for any code that may need to be updated.

As an example, consider a mobile device with an on-board GSM or LTE modem.

Depending on the hardware used, this modem could exist either as part of the System-

on-a-chip (SoC) package or externally on another chip. Because the initialization of

these two layouts has different requirements (e.g., initializing memory busses and trans-

ferring code to an external modem vs. executing modem code on the same chip), this

may need to happen at different phases in the boot process, where different levels of

hardware access are available.

This also applies to various bootloader services, such as partition management and

unlocking. Google’s implementation provides the Fastboot protocol in the final-stage

bootloader, but manufacturers are free to use alternative methods, as well as incorporate

this functionality into other boot stages.

Where and how all of these features are implemented can have a significant security

impact. If a stage in the bootloader is compromised, this could lead to the compromise

of all following stages, along with any peripherals or secured storage that they manage.

The impact of gaining control over a bootloader can be mitigated by using the lowest-

possible Exception Level (discussed in the previous section), and performing tasks that

involve taking potentially-untrusted input in later, less-privileged stages of the process.

However, once again, other than the Trusted Firmware reference implementation, no

23

Chapter 2. BootStomp: A Bootloader Analyzer

guidance is given on how to manage exception levels with respect to bootloader fea-

tures.

One aspect that increases the attack surface of modern bootloaders is that the code

used to bootstrap additional hardware, such as modems, needs to be updateable, and

thus needs to be stored on writable partitions. These writeable partitions, in turn, could

be modified by an attacker with privileged code execution. Thus, it is critical that the

content of these partitions is verified, such as by checking the validity of a cryptographic

signature. This should ideally be accomplished by a previous bootloader stage, which

thus needs to load, parse, and verify these partitions. This usage of data from writeable

(and, as discussed previously, potentially attacker-controlled) partitions is what makes

common memory corruption vulnerabilities in bootloaders very dangerous.

2.2.1 Bootloader Implementations

In the remainder of this Section, we explore four bootloaders from popular device

manufacturers. These implementations all serve the same functions for their respective

hardware platforms and aim to comply with both ARM and Google’s standards, but do

so in vastly different ways.

A comparison of the implementations can be found in Table 2.1. If an attacker

can compromise the final stage bootloader, they will likely be able to also affect any

24

Chapter 2. BootStomp: A Bootloader Analyzer

Table 2.1: Bootloader features, and the Exception Level they occur in.

Modem Peripherals

Vendor EL Fastboot Initialization Initialization

Qualcomm EL1 3 7 7

HiSilicon EL3 3 3 3

NVIDIA EL1 3 7 7

MediaTek EL1 3 3 7

functionality it contains, as well as any that it in turn loads, which in these cases, is the

Android kernel and OS.

Qualcomm. The Qualcomm MSM chipset family is by far the most popular mobile

chipset in devices today, representing over 60% of mobile devices [76]. While many

manufacturers of MSM-based devices will customize the bootloader to fit their specific

product’s features, Qualcomm’s “aboot” bootloader is still used with little modifica-

tions on many of them.

aboot is based on the Little Kernel (LK) open-source project, and provides the

final stage non-secure OS loading functionality (equivalent to BL33 in ARM’s refer-

ence implementation). In further similarity to BL33, it runs at EL1, giving it the same

level of privilege as the kernel it aims to load. It conforms very closely to Google’s

Verified Boot guidelines, implementing the traditional set of Android-specific features,

including Fastboot, recovery partition support, and unlocking. aboot can be used in

25

Chapter 2. BootStomp: A Bootloader Analyzer

either a Class A or Class B Verified Boot implementation, as Fastboot, and therefore

unlocking can be disabled by the OEM or mobile carrier.

HiSilicon and Huawei. HiSilicon Kirin-based devices, such as those from Huawei,

implement a very different bootloader architecture to the others we examined. Instead

of merely being responsible for the initialization required to load Android, this loader

also combines functionality usually found elsewhere in the boot process, such as ini-

tializing the radio hardware, secure OS, secure monitor, among others, giving it the

equivalent roles of BL31, BL33, and BL2 in the ARM reference implementation. In

fact, this bootloader is loaded directly by the ROM-based first-stage bootloader (BL1).

To have the privilege necessary to perform all these tasks, HiSi’s bootloader runs at

EL3, and executes the Linux kernel in the boot partition at EL1 when it is finished.

Along with its hardware initialization tasks, it also includes Fastboot support, which

allows for unlocking.

MediaTek. Devices based on MediaTek chipsets, such as the Sony Xperia XA and

other similar handsets, implement a bootloader similar to Qualcomm’s but using a very

different codebase. The Android-specific loader runs at EL1, and is also responsible for

partition management and unlocking via Fastboot. Unlike Qualcomm’s, this loader is

also responsible for bootstrapping the modem’s baseband firmware, meaning that any

compromise in the bootloader could impact this critical component as well.

26

Chapter 2. BootStomp: A Bootloader Analyzer

NVIDIA. NVIDIA’s Tegra-based devices ship with a bootloader known as hboot.

This bootloader is very similar to Qualcomm’s, in that it runs at EL1, and implements

only the fastboot functionality at this stage.

2.3 Unlocking Bootloaders

While security-focused bootloaders do significantly raise the bar for attackers wish-

ing to persistently compromise the device, there are many cases in which “unlocking,”

as detailed in Section 2.1, has legitimate benefits. Only permitting the execution of

signed code makes the development of the Android OS itself problematic, as well as

disallowing power-users from customizing and modifying the OS’s code.

Of course, this is a very security-sensitive functionality; an attacker could unlock

the bootloader and then modify the relevant partitions as a way of implementing a

persistent rootkit. Google’s Verified Boot standard covers the design of this impor-

tant mechanism, discusses many high-level aspects of managing the device’s security

state (see Section 2.1), and even provides specifics about digital signatures to be used.

However, as with the ARM specifications covering Trusted Boot, these specs must also

allow for platform-specific variations in implementation, such as where or how these

security mechanisms are integrated into the boot process.

27

Chapter 2. BootStomp: A Bootloader Analyzer

Furthermore, there are many unspecified, implicit properties of Verified Boot that a

valid implementation should enforce, to ensure that the device is protected from privi-

leged code execution or unauthorized physical control. These properties include:

The device state should only transition from locked to unlocked with explicit user

content. This is implicitly handled by requiring a command sent to Fastboot to unlock,

as this usually requires physical access to activate, and causes a warning to be displayed

to the user. Similarly, a malicious app — no matter how privileged it is — should not

be able to silently unlock the bootloader.

Only the authorized owner of the device should be able to unlock the bootloader.

This means that anyone in possession of a phone that is not theirs cannot simply access

Fastboot or similar protocol (i.e., by rebooting the phone) and trigger an unlock. This

is avoided on some devices through checking an additional flag called “OEM unlock,”

(or, more informally “allow unlock”). This flag is controlled by an option in the An-

droid Settings menu, and it is only accessible if the device is booted and the user has

authenticated (for instance, by inserting the correct “unlock pattern”). A proper imple-

mentation of Fastboot will honor the “OEM unlock” flag and it will refuse to unlock

the bootloader if this flag is set to false.

Interestingly, there is no requirement for the storage of the device’s security state.

While the standard offers a suggestion about how to tie this state and its transitions

to the security properties they wish to enforce, the exact storage of this information

28

Chapter 2. BootStomp: A Bootloader Analyzer

is left out, likely to account for hardware variations with respect to secured storage.

Unfortunately, as we discuss in Section 2.4, specifics of such implementation details

can negatively impact the security properties of the bootloader.

2.3.1 Unlocking vs Anti-Theft

Another interesting factor related to bootloaders and bootloader locking is the over-

all usability of a device by an attacker after it has been stolen. As mandated by

laws [123] and industry standards [49], phones should implement mechanisms to pre-

vent their usage when stolen. Google refers to this protection as Factory Reset Pro-

tection (FRP) [45], and it has been enabled in Android since version 5.0. In Google’s

own implementations, this means that the Android OS can restrict the usage of a phone,

even after a factory-reset, unless the legitimate user authenticates.

This presents an interesting contradiction in relation to bootloader unlocking capa-

bilities. First, since this mechanism is governed from within the OS, it could be lever-

aged by a malicious process with sufficient privilege. Of course, the original owner

should be able to authenticate and restore the device’s functionality, but this could still

be used as a form of denial-of-service. Second, some manufacturers offer low-level

firmware upload functionality, such as in the BL1 or BL2 stages, designed to restore

the device to a working state in the event it is corrupted. This feature is in direct opposi-

tion to anti-theft functionality, as if a user can recover from any kind of corruption, this

29

Chapter 2. BootStomp: A Bootloader Analyzer

mechanism may be able to be bypassed. However, if this mechanism respects the anti-

theft feature’s restrictions on recovering partitions, this also means the device can be

rendered useless by a sufficiently-privileged malicious process. In other words, there is

an interesting tension between anti-theft and anti-bricking mechanisms: if the anti-theft

is implemented correctly, an attacker could use this feature against the user to irreme-

diably brick her device; vice versa, if an anti-bricking mechanism is available, a thief

could use this mechanism to restore the device to a clean, usable state. In Section 2.7,

we explore how this tension can be resolved.

2.4 Attacking Bootloaders

Regardless of implementation specifics, bootloaders have many common functions

that can be leveraged by an attacker. While they may appear to be very isolated

from possible exploitation, bootloaders still operate on input that can be injected by

a sufficiently-privileged attacker. For example, the core task a bootloader must perform

(that of booting the system) requires the bootloader to load data from non-volatile stor-

age, figure out which system image on which partition to boot, and boot it. To enforce

the Chain of Trust, this also involves parsing certificates and verifying the hash of the

OS kernel, all of which involve further reading from the device’s storage. In Class B

implementations, the device’s security state must also be consulted to determine how

30

Chapter 2. BootStomp: A Bootloader Analyzer

much verification to perform, which could be potentially stored in any number of ways,

including on the device’s storage as well. While bootloader authors may assume that

this input is trusted, it can, in fact, be controlled by an attacker with sufficient access to

the device in question.

In this work, we assume an attacker can control any content of the non-volatile

storage of the device. This can occur in the cases that an attacker attains root privileges

on the primary OS (assumed to be Android for our implementation). While hardware-

enforced write protection mechanisms could limit the attacker’s ability to do this, these

mechanisms are not known to be in wide use today, and cannot be used on any partition

the OS itself needs to routinely write to.

Given this attacker model, our goal is to automatically identify weaknesses, in de-

ployed, real-world bootloader firmware, that can be leveraged by an attacker conform-

ing to our attacker model to achieve a number of goals:

Code execution. Bootloaders process input, read from attacker-controlled non-volatile

storage, to find, validate, and execute the next step in the boot process. What if the

meta-data involved in this process is maliciously crafted, and the code processing it is

not securely implemented? If an attacker is able to craft specified meta-data to trigger

memory corruption in the bootloader code, they may achieve code execution during

the boot process. Depending on when in the boot process this happens, it might grant

the attacker control at exception levels considerably higher than what they may achieve

31

Chapter 2. BootStomp: A Bootloader Analyzer

with a root or even a kernel exploit on the device. In fact, if this is done early enough in

the boot process, the attacker could gain control over Trusted Execution Environment

initialization, granting them a myriad of security-critical capabilities that are unavail-

able otherwise.

Bricking. One aspect that is related to secure bootloaders is the possibility of “brick-

ing” a device, i.e., the corruption of the device so that the user has no way to regain

control of it. Bootloaders attempt to establish whether a piece of code is trusted or

not: if such code is trusted, then the bootloader can proceed with their loading and ex-

ecution. But what happens when the trust cannot be established? In the general case,

the bootloader stops and issues a warning to the user. The user can, usually through

the bootloader’s recovery functionality (e.g., Fastboot) restore the device to a working

state. However, if an attacker can write to the partition holding this recovery mecha-

nism, the user has no chance to restore the device to an initial, clean state, and it may

be rendered useless.

This aspect becomes quite important when considering that malware analysis sys-

tems are moving from using emulators to using real, physical devices. In this context,

a malware sample has the capability of bricking a device, making it impossible to re-

use it. This possibility constitutes a limitation for approaches that propose baremetal

malware analysis, such as BareDroid [88].

32

Chapter 2. BootStomp: A Bootloader Analyzer

One could think of having a mechanism that would offer the user the possibility

of restoring a device to a clean state no matter how compromised the partitions are.

However, if such a mechanism were available, any anti-theft mechanism (as discussed

in Section 2.3), could be easily circumvented.

Unsafe unlock. As discussed in Section 2.3, the trusted boot standard does not man-

date the implementation details of storing the secure state. Devices could use an eMMC

flash device with RPMB, an eFuse, or a special partition on the flash, depending on

what is available. If the security state is stored on the device’s flash, and a sufficiently-

privileged process within Android can write to this region, the attacker might be able to

unlock the bootloader, bypassing the requirement to notify the user. Moreover, depend-

ing on the implementation, the bootloader could thus be unlocked without the user’s

data being wiped.

In Section 2.5, we propose a design for an automated analysis approach to detect

vulnerabilities in bootloader implementations. Unfortunately, our experiments in Sec-

tion 2.6 show that currently deployed bootloaders are vulnerable to combinations of

these issues. But hope is not lost – in Section 2.7, we discuss a mechanism that ad-

dresses this problematic aspect.

33

Chapter 2. BootStomp: A Bootloader Analyzer

2.5 BOOTSTOMP

The goal of BOOTSTOMP is to automatically identify security vulnerabilities that

are related to the (mis)use of attacker-controlled non-volatile memory, trusted by the

bootloader’s code. In particular, we envision using our system as an automatic sys-

tem that, given a bootloader as input, outputs a number of alerts that could signal the

presence of security vulnerabilities. Then, human analysts can analyze these alerts and

quickly determine whether the highlighted functionality indeed constitutes a security

threat.

Bootloaders are quite different from regular programs, both regarding goals and

execution environment, and they are particularly challenging to analyze with existing

tools. In particular, these challenges include:

• Dynamic analysis is infeasible. Because a primary responsibility of bootloaders

is to initialize the hardware, any concrete execution of bootloaders would require

this hardware.

• Bootloaders often lack available source code, or even debugging symbols. Thus,

essential tasks, including finding the entry point of the program, become much

more difficult.

• Because bootloaders run before the OS, the use of syscalls and standard libraries

that depend on this OS is avoided, resulting in all common functionality, includ-

34

Chapter 2. BootStomp: A Bootloader Analyzer

ing even functions such as memcpy, being reimplemented from scratch, thus

making standard signature-based function identification schemes ineffective.

To take the first step at overcoming these issues, we developed a tool, called BOOT-

STOMP, combining different static analyses as well as a dynamic symbolic execution

(DSE) engine, to implement a taint analysis engine. To the best of our knowledge, we

are the first to propose a traceable offline (i.e., without requiring to run on real hard-

ware) taint analysis completely based on dynamic symbolic execution. Other works

as [105] [130] propose completely offline taint analyses on binaries. In contrast to our

work, they implement static taint analyses and are hence not based on dynamic sym-

bolic execution.

The main problem with these types of approaches is that, though sound, they might

present a high rate of false positives, which a human analyst has to filter out by manually

checking them. Note that, in the context of taint analysis, a false positive result is a path

that is mistakenly considered tainted. Furthermore, producing a trace (i.e., a list of basic

blocks) representing a tainted path using a static taint analysis approach is not as simple

as with symbolic execution.

On the other hand, our approach based on DSE, though not sound (i.e., some tainted

paths might not be detected as explained in Section 2.6.4), presents the perk of returning

a traceable output with a low false positives rate, meaning that the paths we detected as

tainted are indeed tainted, as long as the initial taint is applied and propagated correctly.

35

Chapter 2. BootStomp: A Bootloader Analyzer

Note that there is a substantial difference between false positives when talking about

taint analyses and when talking about vulnerability detection. Though our tool might

return some false positives in terms of detected vulnerabilities, as seen in Section 2.6,

false positives in tainted path detection are rare (we never found any in our experiments)

as our tool is based on DSE. For a deeper discussion about the results obtained by

BOOTSTOMP, please refer to Section 2.6.4.

With these considerations in mind, since the output of our analysis is supposed to

be triaged by a human, we opted for a taint analysis based on DSE.

This Section discusses the goal, the design features, and the implementation details

of BOOTSTOMP.

2.5.1 Design

Our system aims to find two specific types of vulnerabilities: uses of attacker-

controlled storage that result in a memory-corruption vulnerability, and uses of attacker-

controlled storage that result in the unlocking of the bootloader. While these two kinds

of bugs are conceptually different, we are able to find both using the same underlying

analysis technique.

The core of our system is a taint analysis engine, which tracks the flow of data

within a program. It searches for paths within the program in which a seed of taint (such

as the attacker-controlled storage) is able to influence a sink of taint (such as a sensitive

36

Chapter 2. BootStomp: A Bootloader Analyzer

Figure 2.2: BOOTSTOMP overview.

memory operation). The tool raises an alert for each of these potentially vulnerable

paths. The human analyst can then process these alerts and determine whether these

data flows can be exploitable.

Our system proceeds in the following steps, as shown in Figure 2.2:

Seed Identification. The first phase of our system involves collecting the seeds of

taint. We developed an automated analysis step to find all the functions within the

program that read data from any non-volatile storage, which are used as the seeds when

locating memory corruption vulnerabilities. However, if the seeds have semantics that

cannot be automatically identified, such as the unlocking mechanism of the bootloader,

BOOTSTOMP allows for the manual specification of seeds by the analyst. This feature

37

Chapter 2. BootStomp: A Bootloader Analyzer

comes particularly in handy when source code is available, as the analyst can rely on it

to manually provide seeds of taint.

Sink Identification. We then perform an automated analysis to locate the sinks of

taint, which represent code patterns that an attacker can take advantage of, such as bulk

memory operations. Moreover, writes to the device’s storage are also considered sinks

for locating potentially attacker-controlled unlocking mechanisms.

Taint Analysis. Once the seeds of taint have been collected, we consider those func-

tions containing the seed of taint and, starting from their entry point, perform a multi-

tag taint analysis based on under-constrained symbolic execution [102] to find paths

where seeds reach sinks. This creates alerts, for an analyst to review, including de-

tailed context information, which may be helpful in determining the presence and the

exploitability of the vulnerability.

In the remainder of this Section, we explore the details about each of these steps.

2.5.2 Seed Identification

For finding memory corruption vulnerabilities, our system supports the automatic

identification of seeds of taint. We use approaches similar to those in prior work

(e.g., [115]). We rely on error logging because there are many different mechanisms

that may read from non-volatile memory, or different types of memory (plain flash

memory vs. eMMC), and these error log strings give us semantic clues to help finding

38

Chapter 2. BootStomp: A Bootloader Analyzer

1 #define SEC_X_LEN 255
2
3 void get_conf_x() {
4 n = read_emmc("sec_x", a2, a3);
5 if (n < SEC_X_LEN) {
6 return;
7 }
8 //...
9 }

10
11 int get_user_data() {
12 if(!read_emmc(b1, b2, 0)) {
13 debug("EMMC_ERROR: no data read");
14 return -1;
15 }
16 // ...
17 }

Figure 2.3: BOOTSTOMP first determines the function reading from emmc by scanning error mes-
sages, then it infers the function arguments types.

them. Our system looks for error logging functions using keywords as mmc, oeminfo,

read, and fail, and avoiding keywords like memory and write.

This approach is useful for identifying functions that somehow retrieve the content

from a device’s storage. However, since the signature of these functions is not known,

it is challenging to identify which argument of this function stores the receiving buffer.

To determine the argument to be tainted, we use an approach based on type inference.

Ideally, the taint should only be applied to the seed’s argument pointing to the mem-

ory location where the read data will be stored. As distinguishing pointers from integers

is an undecidable problem [128], our analysis might dereference an integer in the pro-

cess of applying the taint, resulting in a possible huge rate of false positive alarms.

Nonetheless, during this study, we observed that, surprisingly, strings might not always

be passed by reference to a function, but rather by value. During our analysis, we

39

Chapter 2. BootStomp: A Bootloader Analyzer

check every call site of the functions we retrieved using the above-mentioned method

and check the entity of every passed argument. If an argument is composed of only

ASCII printable characters, we assume it is a string, and we consider the same argu-

ment to be a string for every other call to the same function. When looking for the

memory locations to apply the taint, we consider this information to filter out these ar-

guments. We also do not taint arguments whose passed values are zeroes, as they might

represent the NULL value.

As an example, consider Figure 2.3. First, BOOTSTOMP retrieves the function

read emmc as a possible seed function, by analyzing the error log at line 13. Then, it

scans every call site of read emmc and infers that the returned value is an integer (as

it is compared against an integer variable), the first parameter is a string and the third

parameter can assume the value zero. As read emmc is a candidate seed function, it

has to store the content read from non-volatile storage in a valid buffer, pointed by a

non-null pointer. Therefore, BOOTSTOMP applies the taint only to the second param-

eter of read emmc (a2 and b2). Note that, as the receiving buffer could be returned

by a seed function, if the type of the returned value cannot be inferred, the variable it

is assigned to is tainted as well. Note that, when a tainted pointer is dereferenced, we

taint the entire memory page it points to.

In the case of locating unlocking-related vulnerabilities, there is no bootloader-

independent way of locating the unlocking function, since the implementation details

40

Chapter 2. BootStomp: A Bootloader Analyzer

significantly vary. Therefore, BOOTSTOMP also supports supplying the seeds manu-

ally: an analyst can thus perform reverse-engineering to locate which function imple-

ments the “unlock” functionality and manually indicate these to our analysis system.

While this is not a straightforward process, there is a specific pattern a human analyst

can rely on: Fastboot’s main command handler often includes a basic command line

parser that determines which functionality to execute, and the strings involved are often

already enough to quickly pinpoint which function actually implements the “unlock”

functionality.

2.5.3 Sink Identification

Our automatic sink identification strategy is designed to locate four different types

of sinks:

memcpy-like functions. BOOTSTOMP locates memcpy-like functions (e.g., memcpy,

strcpy) by looking for semantics that involve moving memory, unchanged, from a

source to a destination. As mentioned above, there are no debugging symbols, and

standard function signature-based approaches would not be effective. For this reason,

we rely on a heuristic that considers the basic blocks contained within each function

to locate the desired behavior. In particular, a function is considered memcpy-like if it

contains a basic block that meets the following conditions: 1) Loads data from memory;

2) stores this same data into memory; 3) increments a value by one unit (one word, one

41

Chapter 2. BootStomp: A Bootloader Analyzer

byte, etc). Moreover, since it is common for bootloaders to rely on wrapper functions,

we also flag functions that directly invoke one (and only one) function that contains a

block satisfying the above conditions.

We note that there may be several other functions that, although satisfy these con-

ditions as well, do not implement a memcpy-like behavior. Thus, we rely on an addi-

tional observation that memcpy and strcpy are among the most-referenced functions in

a bootloader, since much of their functionality involves the manipulation of chunks of

memory. We therefore sort the list of all functions in the program by their reference

count, and consider the first 50 as possible candidates. We note that, empirically, we

found that memcpy functions often fall within the top five most-referenced functions.

Attacker-controlled dereferences. BOOTSTOMP considers memory dereferences con-

trolled by the attacker as sinks. In fact, if attacker-controlled data reaches a dereference,

this is highly indicative of an attacker-controlled arbitrary memory operation.

Attacker-controlled loops. We consider as a sink any expression used in the guard of

a loop. Naturally, any attacker able to control the number of iterations of a loop, could

be able to mount a denial-of-service attack.

Writes to the device’s storage. When considering unlocking vulnerabilities, we only

use as sinks any write operation to the device’s storage. This encodes the notion that

an unlocking mechanism that stores its security state on the device’s storage may be

controllable by an attacker. To identify such sinks, we adopt the same keyword-based

42

Chapter 2. BootStomp: A Bootloader Analyzer

Tainted
Page

ty

seed_func(ty);
x = ty[5];

Code Memory

Symbolic expressions

ty = TAINT_ty
x = deref(TAINT_ty_loc_5)

x

Figure 2.4: Taint propagation example.

approach that we employed to identify the seeds of taint (i.e., by using relevant key-

words in error logging messages).

2.5.4 Taint Tracking

While we cannot execute the bootloaders concretely, as we discussed above, we can

execute them symbolically. Our interest is in the path the data takes in moving from

a seed to a sink, and path-based symbolic execution lets us reason about this, while

implicitly handling taint-propagation. Given a bootloader, along with the seeds and

sinks identified in the previous stages, the analysis proceeds as follows:

• Locate a set of entry points, defined as any function that directly calls one of the

identified seeds.

• Begin symbolic execution at the beginning of each entry point. Note that, before

starting to symbolically execute an entry point, BOOTSTOMP tries to infer, look-

ing for known header as ELF, where the global data is located. If it does find it,

43

Chapter 2. BootStomp: A Bootloader Analyzer

it unconstrains each and every byte in it, so to break any assumptions about the

memory content before starting to analyze the entry point.

• When a path encounters a function, either step over it, or step into it, considering

the code traversal rules below.

• When a path reaches a seed, the appropriate taint is applied, per the taint policy

described below.

• Taint is propagated implicitly, due to the nature of symbolic execution. This

includes the return values of functions handling tainted data.

• If a path reaches a sink affected by tainted data, an alert is raised.

Code traversal. To avoid state explosion, we constrain the functions that a path will

traverse, using an adaptive inter-function level. Normally, the inter-function level spec-

ifies how many functions deep a path would traverse. However, the handling of tainted

data in our analysis means that we implicitly care more about those functions which

consume tainted data. Therefore, we only step into functions that consume tainted

data, up to the inter-function level. For our experiments, we fixed the inter-function

level at 1. More in detail, our analysis traverses the code according to the following

rules:

44

Chapter 2. BootStomp: A Bootloader Analyzer

• When no data is tainted, functions are not followed, such as at the beginning of

an entry point, before the seed has been reached. Particularly, this path selection

criteria allows us to have a fast yet accurate taint analysis, at the expense of

possible false negative results, as some tainted paths might not be discovered due

to some missed data aliases.

• Functions are not followed if their arguments are not tainted.

• Analysis terminates when all the possible paths between the entry point and its

end are analyzed, or a timeout is triggered. Note that we set a timeout of ten

minutes for each entry point. As we show in Section 2.6.2 our results indicate

that this is a very reasonable time limit.

• Unless any of the above conditions are met, we follow functions with an inter-

function level of 1. In other words, the analysis will explore at least one function

away from the entry point.

• We explore the body of a loop (unroll the loop) exactly once, and then assume

the path exits the loop.

(Under-Constrained) Symbolic Execution. Our approach requires, by design, to

start the analysis from arbitrary functions, and not necessarily from the bootloader’s

entrypoint, which we may not even be able to determine. This implies that the ini-

tial state may contain fewer constraints than it should have at that particular code

45

Chapter 2. BootStomp: A Bootloader Analyzer

point. For this reason, we use under-constrained symbolic execution, first proposed

by Ramos et al. [102], which has been proven to reach good precision in this context.

Multi-tag taint analysis. To reach a greater precision, our system implements a multi-

tag tainting approach [84]. This means that, instead of having one concept of taint, each

taint seed generates tainted data that can be uniquely traced to where it was generated

from. Furthermore, we create unique taint tags for each invocation of a seed in the

program. This means, for example, that if a taint seed is repeatedly called, it will

produce many different taint tags. This improves precision when reasoning about taint

flow.

Taint propagation and taint removal. Taint is implicitly propagated using symbolic

execution, as no constraint is ever dropped. This means that if a variable x depends

on a tainted variable ty, the latter will appear in the symbolic expression of the former.

As an example consider Figure 2.4. Suppose that a location of an array pointed by

ty is dereferenced and assigned to x, such as x = ty[5]. Assuming now that ty is

tainted because pointing to data read from untrusted storage, the memory page it points

to will be tainted, meaning that every memory location within that page will contain a

symbolic variable in the form TAINT ty loc i. After the instruction x = ty[5], the

symbolic variable x will be in the form deref(TAINT ty loc 5).

On the other hand, taint is removed in two cases. Implicitly when a non-tainted

variable or value is written in a tainted memory location, or when a tainted variable

46

Chapter 2. BootStomp: A Bootloader Analyzer

is constrained within non tainted values. As an example and by referring to the above

tainted variable x, if a check such as if(x < N), where N is non-tainted value, is

present, x would get untainted.

Concretization strategy. When dealing with memory writes in symbolic locations, the

target address needs to be concretized. Unlike existing work [19], our analysis opts to

concretize values with a bias toward smaller values in the possible range (instead of

being biased toward higher values). This means that, when a symbolic variable could

be concretized to more than one value, lower values are preferred. In previous work,

higher values were chosen to help find cases where memory accesses off the end of an

allocated memory region would result in vulnerabilities. However, these values may not

satisfy conditional statements in the program that expect the value to be “reasonable,”

(such as in the case of values used to index items in a vector) and concretizing to lower

values allows paths to proceed deeper into the program. In other words, we opt for

this strategy to maximize the number of paths explored. Also, when BOOTSTOMP has

to concretize some expressions, it tries to concretize different unconstrained variables

to different (low) values. This strategy aims to keep the false positive rate as low as

possible. For a deeper discussion about how false negatives and positive might arise,

please refer to Section 2.6.4.

Finally, our analysis heavily relies on angr [116] (taint engine) and IDA Pro [55]

(sink and seed finding).

47

Chapter 2. BootStomp: A Bootloader Analyzer

2.6 Evaluation

This Section discusses the evaluation of BOOTSTOMP on bootloaders from com-

mercial mobile devices. In particular, for each of them, we run the analysis tool to

locate the two classes of vulnerabilities discussed in Section 2.5. As a first experiment,

we use the tool to automatically discover potential paths from attacker-controllable data

(i.e., the flash memory) to points in the code that could cause memory corruption vul-

nerabilities. As a second experiment, we use the tool to discover potential vulnerabili-

ties in how the lock/unlock mechanism is implemented. We ran all of our experiments

on a 12-Core Intel machine with 126GB RAM and running Ubuntu Linux 16.04.

We first discuss the dataset of bootloaders we used, an analysis of the results, and

an in-depth discussion of several use cases.

2.6.1 Dataset

For this work, we considered five different bootloaders. These devices represent

three different chipset families: Huawei P8 ALE-L23 (Huawei / HiSilicon chipset),

Sony Xperia XA (MediaTek chipset), and Nexus 9 (NVIDIA Tegra chipset). We also

considered two versions of the LK-based bootloader, developed by Qualcomm. In par-

ticular, we considered an old version of Qualcomm’s LK bootloader (which is known

48

Chapter 2. BootStomp: A Bootloader Analyzer

Table 2.2: Vulnerabilities Evaluation. Alerts raised by BOOTSTOMP on potential security vulnera-
bilities. In order: bootloader, number of seeds, number of sinks, number of entry points, number of
generated alerts, number of bug-related alerts, number of unique bugs, number of triggered timeouts,
analysis time, average analysis time per entry point, and memory consumption.

Bootloader Seeds Sinks EP Total Alerts Bug-Related Alerts Bugs Timeout Time Time per EP Memory

loop deref memcpy loops deref memcpy [mm:ss] [mm:ss] [MB]

Qualcomm (Latest) 2 1 3 1 1 2 0 0 0 0 1 12:49 04:16 512

Qualcomm (Old) 3 1 5 3 0 5 0 0 4 1 0 10:14 02:03 478

NVIDIA 6 1 12 7 0 0 1 0 0 1 0 24:39 02:03 248

HiSilicon 20 4 27 8 4 5 8 4 3 5 1 21:28 00:48 275

MediaTek 2 2 2 - - - - - - - - 00:08 00:04 272

Total 33 9 49 19 5 12 9 4 7 7 2 69:18 09:14 1785

to contain a security vulnerability, CVE-2014-9798 [85]) and its latest available version

(according to the official git repository [101]).

2.6.2 Finding Memory Corruption

We used BOOTSTOMP to analyze the five bootloaders in our dataset to discover

memory corruption vulnerabilities. These vulnerabilities could result in arbitrary code

execution or denial-of-service attacks. Table 2.2 summarizes our findings. In partic-

ular, the table shows the number of seeds, sinks, and entry points identified in each

bootloader. The table also shows the number of alerts raised for each bootloader. Out

of a total of 36, for 12 of them, the tool identified a potential path from a source to

memcpy-like sink, leading to the potential of a buffer overflow. The tool raised 5

alerts about the possibility of a tainted variable being dereferenced, which could in

49

Chapter 2. BootStomp: A Bootloader Analyzer

turn constitute a memory corruption bug. Finally, for 19, the tool identified that tainted

data could reach the conditional for a loop, potentially leading to denial-of-service at-

tacks. We then manually investigated all the alerts to determine whether the tool un-

covered security vulnerabilities. Our manual investigation revealed a total of seven

security vulnerabilities, six of which previously-unknown (five are already confirmed

by the respective vendors), while the remaining one being the previously-known CVE-

2014-9798 affecting an old version of Qualcomm’s LK-based bootloader. Note that,

as BOOTSTOMP provides the set of basic blocks composing the tainted trace together

with the involved seed of taint and sink, manual inspection becomes easy and fast even

for not-so-experienced analysts. We also note that, due to bugs in angr related to the

analysis of ARM’s THUMB-mode instructions, the MediaTek bootloader was unable

to be processed correctly.

These results illustrate some interesting points about the scalability and feasibility

of BOOTSTOMP. First, we note that each entry point’s run elapsed on average less

than five minutes (Duration per EP column), discovering a total of seven bugs. We

ran the same set of experiments using a time limit of 40 minutes. Nonetheless, we

noticed that no additional alerts were generated. These two results led us to believe

that a timeout of ten minutes (i.e., twice as the average analysis run) was reasonable.

Second, we noted a peak in memory consumption while testing our tool against LK

bootloaders. After investigating, we found out that LK was the only bootloader in the

50

Chapter 2. BootStomp: A Bootloader Analyzer

dataset having a well-known header (ELF), which allowed us to unconstrain all the

bytes belonging to the .data and .bss segments, as stated in Section 2.5. Third, we

note that the overall number of alerts raised is very low, in the range that a human

analyst, even operating without debugging symbols or other useful reverse-engineering

information, could reasonably analyze them. Finally, as we show in the table, more than

one alert triggered due to the same underlying vulnerability; the occurrence of multiple

alerts for the same functionality was a strong indicator to the analyst of a problem. This

can occur when more than one seed fall within the same path generating a unique bug,

for instance, when more than one tainted argument is present in a memcpy-like function

call.

With this in mind, and by looking at the table, one can see that around 38.3% of

the tainted paths represent indeed real vulnerabilities. Note also that in the context of

tainted paths, none of the reported alerts were false positives (i.e., not tainted paths),

though false positives are theoretically possible, as explained in Section 2.6.4.

Our tool uncovered five new vulnerabilities in the Huawei Android bootloader.

First, an arbitrary memory write or denial of service can occur when parsing Linux

Kernel’s device tree (DTB) stored in the boot partition. Second, a heap buffer overflow

can occur when reading the root-writable oem info partition, due to not checking the

num records field. Additionally, a user with root privileges can write to the nve

and oem info partitions, from which both configuration data and memory access per-

51

Chapter 2. BootStomp: A Bootloader Analyzer

missions governing the phone’s peripherals (e.g., modem) are read. The remaining two

vulnerabilities will be described in detail below.

Unfortunately, due to the architecture of the Huawei bootloader, as detailed in Sec-

tion 2.2.1, the impact of these vulnerabilities on the security of the entire device is quite

severe. Because this bootloader runs at EL3, and is responsible for the initialization of

virtually all device components, including the modem’s baseband firmware and Trusted

OS, this vulnerability would not only allow one to break the chain of trust, but it would

also constitute a means to establish persistence within the device that is not easily de-

tectable by the user, or available to any other kind of attack. Huawei confirmed these

vulnerabilities.

BOOTSTOMP also discovered a vulnerability in NVIDIA’s hboot. hboot op-

erates at EL1, meaning that it has equivalent privilege on the hardware as the Linux

kernel, although it exists earlier in the Chain of Trust, and therefore its compromise can

lead to an attacker gaining persistence. We have reported the vulnerability to NVIDIA,

and we are working with them on a fix.

Finally, we rediscovered a previous vulnerability reported against Qualcomm’s aboot,

CVE-2014-9798. These vulnerabilities allowed an attacker to perform denial-of-service

attack. However, this vulnerability has been patched, and our analysis of the current

version of aboot did not yield any alerts.

52

Chapter 2. BootStomp: A Bootloader Analyzer

Case study: Huawei memory corruption vulnerability. BOOTSTOMP raised multi-

ple alerts concerning a function, whose original name we believe to be read_oem().

In particular, the tool highlighted how this function reads content from the flash and

writes the content to a buffer. A manual investigation revealed how this function is

vulnerable to memory corruption. In particular, the function reads a monolithic record-

based datastructure stored in a partition on the device storage known as oem info.

This partition contains a number of records, each of which can span across multi-

ple blocks. Each block is 0x4000 bytes, of which the first 512 bytes constitute a

header. This header contains, among others, the four following fields: record_id,

which indicates the type of record; record_len, which indicates the total length of

the record; record_num, which indicates the number of blocks that constitute this

record; record_index, which is a 1-based index.

The vulnerability lies in the following: the function will first scan the partition for

blocks with a matching record_id. Now, consider a block whose record num is 2

and whose record index is 1. The fact that record num is 2 indicates that this record

spans across two different blocks. At this point, the read_oem function assumes

that the length of the current block is the maximum, i.e., 0x4000, and it will thus copy

all these bytes into the destination array, completely ignoring the len value passed

as argument. Thus, since the oem info partition can be controlled by an attacker,

an attacker can create a specially crafted record so that a buffer overflow is triggered.

53

Chapter 2. BootStomp: A Bootloader Analyzer

Unfortunately, this bootloader uses this partition to store essential information that is

accessed at the very beginning of every boot, such as the bootloader’s logo. Thus, an

attacker would be able to fully compromise the bootloader, fastboot, and the chain of

trust. As a result, it would thus be possible for an attacker to install a persistent rootkit.

Case study: Huawei arbitrary memory write. The second case study we present is

related to an arbitrary memory write vulnerability that our tool identified in Huawei’s

bootloader.

In particular, the tool raised a warning related to the read_from_partition

function. BOOTSTOMP pinpointed the following function invocation read_from_

partition("boot", hdr->kernel_addr), and, more precisely, the tool high-

lighted that the structure hdr can be attacker-controllable. Manual investigation re-

vealed that not only hdr (and its field, including kernel_addr) are fully control-

lable by an attacker, but that the function actually reads the content from a partition

specified as input (“boot”, in this case), and it copies its content to the address specified

by hdr->kernel_addr. Since this destination address is attacker-controllable, an

attacker could rely on this function to write arbitrary memory (by modifying the content

of the “boot” partition) to an arbitrary address, which the attacker can point to the boot-

loader itself. We note that this vulnerability is only exploitable when the bootloader is

unlocked, but, nonetheless, it is a vulnerability that allows an attacker to run arbitrary

code as the bootloader itself (and not just as part of non-secure OS). Moreover, the next

54

Chapter 2. BootStomp: A Bootloader Analyzer

Table 2.3: Unlocking Functionality Evaluation. Alerts raised by BOOTSTOMP on potentially vulnera-
ble write operation inside unlock routines. In order: bootloader, number of identified sinks, whether or
not the unlocking routine is potentially vulnerable, whether or not the timeout triggered, analysis time,
and remarks.

Bootloader Sinks Potentially Timeout Time Remarks

vulnerable? [mm:ss]

Qualcomm (Latest) 6 3 7 01:00 Detected write on flash and mmc

Qualcomm (Old) 4 3 7 00:40 Detected write on flash and mmc

NVIDIA 9 7 7 02:21 Memory mapped IO

HiSilicon 17 3 3 10:00 Write oeminfo

MediaTek 1 7 3 10:00 Memory mapped IO

Section provides evidence that, at least for this specific case, it is easy for an attacker

to unlock the bootloader.

2.6.3 Analyzing (In)Secure State Storage

As a second use case for our tool, we use it to analyze the same five bootloaders we

previously consider to determine how their security state (i.e., their lock/unlock state) is

stored. In particular, as we discussed in Section 2.3, if the bootloader merely stores the

security state on one of the flash partitions, then an attacker may be able to change the

content of this partition, unlock the phone without the user’s consent, and thus violate

one of Google’s core Verified Boot principles.

55

Chapter 2. BootStomp: A Bootloader Analyzer

To run this experiment, we begin with the manually-identified unlocking function-

ality, as described in Section 2.5.2, and locate paths that reach automatically-identified

writes to the device’s storage. This means that each bootloader has one entry point.

Table 2.3 shows the overall results of this experiment, including the number of possible

write operations to the device’s storage that occurred within the unlocking functionality.

Our system was easily able to locate paths in Qualcomm’s bootloader (both the old and

the newest version) and Huawei’s bootloader where the security state was written to

the device’s non-volatile storage. Upon manual investigation, we discovered that Qual-

comm’s simply stores the bit ‘1’ or ‘0’ for whether the device is locked. Huawei’s stores

a static hash, but can still be recovered and replayed (see case study at the end of this

Section). In both cases, writing the needed value to the flash will unlock the bootloader,

potentially bypassing the mandatory factory reset, if additional steps are not taken to

enforce it, such as those mentioned in Section 2.7. Our tool did not identify any path to

non-volatile storage for NVIDIA’s or MediaTek’s bootloaders. Upon manual investiga-

tion, we discovered that these two bootloaders both make use of memory-mapped I/O to

write the value, which could map to anything from the flash to special tamper-resistant

hardware. Thus, we cannot exclude the presence of vulnerabilities.

Case Study: Huawei bootloader unlock. Our tool identified a path from a function,

which we believe to be called oem_unlock, to a “write” sink. Upon manual investi-

gation, we were able to determine the presence of a vulnerability in the implementation

56

Chapter 2. BootStomp: A Bootloader Analyzer

1 x = md5sum(unlock_code);
2 if (x == ``<target_value>'') {
3 unlock_state = custom_hash(x);
4 write(oem_info,unlock_state);
5 }

Figure 2.5: Implementation of the (vulnerable) unlock functionality in Huawei’s bootloader.

of this functionality, as shown in Figure 2.5. In a normal scenario, the user needs to

provide to the bootloader a device-specific unlock_code. Such code can be ob-

tained by a user through Huawei’s website, by providing the hardware identifiers of the

device. The problem lies in the fact that the “correct” MD5 of the unlock_code,

<target_value>, is stored in a partition of the device’s storage. Thus, even if it

not possible to determine the correct unlock_code starting from its hash, an attacker

could just reuse the correct MD5, compute the expected unlock_state, and store

it to the oem info partition, thus entirely bypassing the user’s involvement.

2.6.4 Discussion

As stated in Section 2.5, and as demonstrated by the results in this Section, our

tool might present some false negatives as well as false positives. In this Section we

consider the results achieved by our taint analysis engine, and we discuss how false

positive and false negatives might arise.

As symbolic execution suffers from the path explosion problem, generally speak-

ing, not all the possible paths between two program points can be explored in a finite

amount of time. This might cause some tainted paths to be missed, causing some vul-

57

Chapter 2. BootStomp: A Bootloader Analyzer

nerabilities to be missed. False negatives might be present also because BOOTSTOMP

does not follow function calls when no taint is applied. This approach is very useful,

since it makes our tool faster as less code has to be analyzed, but it might miss some

correlation between pointers. In fact, if a future tainted variable is aliased, within a

skipped function to a variable whose scope falls within the current function, and this

variable later happens to reach a sink, it will not be reported.

Furthermore, since BOOTSTOMP relies on a maximum fixed inter-function level, it

might not follow all the function calls it encounters, possibly resulting in some tainted

variables not to be untainted as well as some pointer aliases not being tainted. This

problem might create false positives and false negatives.

Additionally, false positives could possibly arise from the fact that not all the re-

ported tainted paths lead to actual vulnerabilities. In fact, when the initial taint is ap-

plied, our tool tries to understand which parameter represents the variable(s) that will

point to the read data, as explained in Section 2.5. If the taint is not applied correctly,

this will result in false positive results. Note, however, that our tool would taint every

parameter that our type inference heuristic does not exclude. Therefore, false negatives

are not possible in this case.

Our concretization strategy could possibly introduce both false positives and false

negatives. Given two unconstrained pointers, intuitively it is unlikely that they will

point to the same memory location. Therefore, the most natural choice is to concretize

58

Chapter 2. BootStomp: A Bootloader Analyzer

them (if necessary) to two different values. Assuming that these two pointers are indeed

aliases, if one of them is tainted and the other reaches a sink, no alarm will be raised

causing then a false negative. On the other hand, if both of them are tainted, but the for-

mer becomes untainted and the latter reaches a sink, an alarm would be raised causing

then a false positive. According to our observations, these cases are very rare though,

as we never encountered two unconstrained pointers that happened to be aliases.

Finally, it is worth noting that while we found some tainted paths that were not

leading to actual vulnerabilities, our tool never detected a tainted path that was supposed

to be untainted.

2.7 Mitigations

In this Section, we explore ways of mitigating the vulnerabilities discovered in the

previous Section. With the increasing complexity of today’s devices, it may be difficult

to completely ensure the correctness of bootloaders, but taking some simple steps can

dramatically decrease the attack surface.

As we have discussed throughout the previous Sections, the goal of Trusted Boot

and Verified Boot is to prevent malicious software from persistently compromising the

integrity of the operating system and firmware. The attacks we discovered all rely on

the attacker’s ability to write to a partition on the non-volatile memory, which the boot-

59

Chapter 2. BootStomp: A Bootloader Analyzer

loader must also read. We can use hardware features present in most modern devices to

remove this ability.

Binding the Security State. Google’s implementations of Verified Boot bind the se-

curity state of the device (including the lock/unlock bit) to the generation of keys used

to encrypt and decrypt user data, as described in Section 2.1.3. While not specifically

requiring any particular storage of the security state, this does ensure that if the secu-

rity state is changed, the user’s data is not usable by the attacker, and the system will

not boot without first performing a factory reset. This, along with the cryptographic

verification mandated by Verified Boot, achieves the goals Google sets, but does not

completely shield the bootloader from arbitrary attacker-controlled input while verify-

ing partitions or checking the security state.

Protect all partitions the bootloader accesses. Most modern mobile devices uti-

lize non-volatile storage meeting the eMMC specification. This specifies the set of

commands the OS uses to read and write data, manage partitions, and also includes

hardware-enforced security features. Since version 4.4, released in 2009 (a non-public

standard, summarized in [83]), eMMC has supported Power-on Write-Lock, which al-

lows individual partitions to be selectively write-protected, and can only be disabled

when the device is rebooted. The standard goes as far as to specify that this must also

be coupled with binding the reset pin for the eMMC device to the main CPU’s reset pin,

so that intrusive hardware attacks cannot be performed on the eMMC storage alone.

60

Chapter 2. BootStomp: A Bootloader Analyzer

While we are not able to verify directly whether any handsets on the market to-

day makes use of this feature, we note that none of the devices whose bootloaders we

examined currently protect the partitions involved in our attacks in this manner. Fur-

thermore, we note that many devices today make use of other features from the same

standard, including Replay-protected Memory Blocks (RPMB) [83] to provide secure

storage accessible from Secure-World code.

eMMC Power-on Write-protect can be used to prevent any partition the bootloader

must read from being in control of an attacker with root privileges. Before execut-

ing the kernel contained in the boot partition, the final stage bootloader should enable

write protection for every partition which the bootloader must use to boot the device.

In Android, the system and boot partitions contain entirely read-only data (exclud-

ing during OS updates), which the bootloader must read for verification, and therefore

can be trivially protected in this way. To close any loopholes regarding unlocking the

bootloader, the partition holding device’s security state should also be write-protected.

The misc partition used by Qualcomm devices, for example, is also used to store data

written by the OS, so the creation of an additional partition to hold the security state

can alleviate this problem.

This does not impede any functionality of the device, or to our knowledge, cause

any impact to the user whatsoever. Of course, this cannot be used to protect partitions

the OS must write to. While the OS does need to write to system and boot to

61

Chapter 2. BootStomp: A Bootloader Analyzer

perform routine software updates, this too can be handled, with only small changes. If

an update is available, the bootloader should simply not enable write-protection when

booting, and perform the update. This increases only marginally the attack surface,

adding only the update-handling code in the bootloader.

It should be noted that this method cannot protect the status of the “Allow OEM

Unlock” option in the Android Settings menu, which by its very design must be writable

by the OS. This means that a privileged process can change this setting, but unlocking

the bootloader still requires physical control of the device as well.

Alternative: Security State in RPMB. eMMC Power-on Write Lock can be used to

protect any partition which is not written to by the OS. If, for whatever reason, this is

not possible, this could also be stored in the Replay-protected Memory Block (RPMB)

portion of the eMMC module.

We can enforce the property that the OS cannot tamper with the security state by

having the Trusted OS, residing in the secure world, track whether the OS has booted,

and only allow a change in the security state if the bootloader is running. Using RPMB

allows us to enforce that only TrustZone can alter this state, as it holds the key needed

to write the data successfully.

When the device boots to the final stage bootloader, it will signal to TrustZone,

allowing modifications to the security state via an additional command. Once the boot-

62

Chapter 2. BootStomp: A Bootloader Analyzer

loader is ready to boot the Android OS, it signals again to TrustZone, which disallows

all writes to the device until it reboots.

While this requires minor modifications to the Trusted OS and final-stage boot-

loader, it does not require a change in the write-protection status or partition layout.

63

Chapter 3

KARONTE: Detecting Insecure
Multi-binary Interactions in
Embedded Firmware

In the previous Chapter, we studied the security of the software that is executed

when a device is switched on: the bootloaders. In this Chapter, we study the security of

the software in a firmware image that is responsible for handling the device’s peripher-

als and managing user requests. In the literature, this software is usually just referred to

as the firmware (or firmware sample) of an IoT device, and, therefore, it will be referred

to as such in this dissertation too. As introduced in Chapter 1, firmware samples are of-

ten made of different components that interact with each other to fulfill users’ requests.

In the following, we study the details of such interconnected environments, and discuss

why existing firmware analysis techniques are ineffective to precisely uncover bugs in

firmware for IoT devices. Then, I present KARONTE: a novel static analysis tool ca-

pable of analyzing embedded-device firmware by modeling and tracking multi-binary

64

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

interactions. Our tool propagates taint information between binaries to detect insecure,

attacker-controlled interactions, and effectively identify vulnerabilities.

First, I explain the attacker model that we assumed in this work, then I describe

how the different components of a firmware sample communicate, and, finally, in the

rest of this Chapter I discuss KARONTE in depth. We tested KARONTE on 53 firmware

samples from various vendors, showing that our prototype tool can successfully track

and constrain multi-binary interactions. In doing so, we discovered 46 zero-day bugs,

which we disclosed to the responsible entities. We performed a large-scale experiment

on 899 different samples, showing that KARONTE scales well with firmware samples

of different size and complexity, and can effectively and efficiently analyze real-world

firmware in a generic and fully automated fashion.

3.1 IoT Attacker Model

IoT devices exchange data over the network. This data can come directly from the

user (e.g., through a web interface), or indirectly from a trusted remote service (e.g.,

cloud backends). Many devices, especially routers, smart meters, and a host of low-

power devices, such as smart light bulbs and locks, use the former paradigm. Moreover,

recent attacks have shown that such devices can be exploited by clever remote attackers,

even when their communication is restricted to a closed local network [62]. In this

65

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

work, we consider network-based attackers who communicate directly with the device,

either through a local network or the Internet. However, as shown in Section 3.19,

KARONTE can be easily extended to other scenarios.

3.2 Firmware Complexity

The firmware of modern IoT devices is complex and made of multiple components.

These components can take the form of either different binaries, packaged in an em-

bedded Linux distribution, or different modules, compiled into a large, single-binary

embedded OS (“blob firmware”). The former type of firmware is, by far, the most

ubiquitous: a large-scale experiment analyzed tens of thousands of firmware samples,

and found that 86% of them were Linux-based [27]. Similar to other Linux-based sys-

tems, Linux-based firmware includes a large number of interdependent binaries.

The different binaries (or components) of the firmware on embedded devices share

data to carry out the device’s tasks. Under our attacker model, this interaction is critical,

as we focus on bugs that can be triggered by attacker input from “outside” of the device

(i.e., over the network), but may affect binaries other than those directly facing the

network. Any analysis that focuses only on these network-facing binaries would miss

bugs contained in other components [21]. On the other hand, an analysis that focuses

on all the binaries in isolation would produce an unacceptable amount of false alerts.

66

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

1 char* parse_URI(Req* req) {
2 char* p = req[1];
3 if (!strncmp(p, "<soap:AddRule", 13))
4 return p; // unconstrained data
5 // ...
6 if (strlen(p) > 127)
7 p[128] = 0;
8 return p; // constrained data
9 }

10 int serve_request(Req *req) {
11 char *data = parse_URI(req);
12 setenv("QUERY_STRING", data, 1);
13 execve(get_handler(req));
14 }

Figure 3.1: Decompiled code of a network-facing program of a real firmware sample.

We demonstrate this in the following example service, based on a real-world firmware

sample. This service is composed of a network-facing web server (Figure 3.1) that

executes a CGI handler binary (Figure 3.2). When the web server receives a user

request, it invokes the function serve_request. Then, after parsing the request

(parse_URI), the web server executes the handler program, passing data via the

QUERY_STRING environment variable. The handler binary retrieves the data and

passes it to process_request. This function contains a bug: if the value of the

field op in the user request is longer than 128 bytes, a buffer overflow occurs. This

overflow is attacker-controlled and represents a significant vulnerability.

While this specific overflow would be detected by an analysis that only focuses

on the handler binary, any single-binary analysis would detect two vulnerabilities in

this program. The second one is the overflow of the log_dir buffer caused by the

LOG_PATH environment variable. Though this is a legitimate bug, its classification as

a vulnerability depends on the provenance of the data in LOG_PATH. If an attacker

67

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

cannot control this data, the bug is not a vulnerability, and the real vulnerability should

be prioritized. Ideally, every alert would be examined, and every bug fixed. Unfortu-

nately, this goal is not feasible in practice. While this simple example has two alerts that

reveal one vulnerability, our evaluation shows that static analysis on individual binaries

in real-world firmware can produce thousands of alerts per device, requiring months of

analyst time to process.

For static analyses to be feasible on binaries, an approach to filter out bugs that can-

not be triggered by an attacker is critical. KARONTE is such an approach. It identifies

data dependencies across binaries, such as the one in this example, by using static anal-

yses to connect functions that produce (or set) data to functions in other binaries that

consume (or get) it.

Throughout this Chapter, we refer to the program interactions shown in the above

example as multi-binary interactions. Similarly, we refer to vulnerabilities that involve

data flows across multiple binaries as multi-binary vulnerabilities. Finally, we refer to

the binary producing data (e.g., the web server in Figure 3.1) as a setter binary, and the

binary consuming data (e.g., the handler binary in Figure 3.2) as a getter binary.

68

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

1 int process_request(char *query, char *log_path) {
2 char *q, arg[128];
3 char log_dir[128];
4 if (!(q=strchr(query, "op=")))
5 return;
6 strcpy(arg, q); // query string argument
7 strcpy(log_dir, dirname(log_path));
8 // ...
9 return 0;

10 }
11 int main(int argc, char *argv[], char *envp[]) {
12 char *query = getenv("QUERY_STRING");
13 char *log_path = getenv("LOG_PATH");
14 process_request(query, log_path);
15 }

Figure 3.2: Decompiled code of a handler binary that contains two bugs. However, only one bug is
reachable by an attacker.

3.3 IPC in IoT Firmware

Automatically determining how user input is introduced into and propagates through

an embedded device is an open problem [93,143,152], and prone to a discouraging rate

of false positives [57]. However, we observed that, in practice, processes communicate

through a finite set of communication paradigms, known as Inter-Process Communica-

tion (or IPC) paradigms.

An instance of an IPC is identified through a unique key (which we term a data key)

that is known by every process involved in the communication. As this information has

to be available to all the involved programs before their execution, it is usually hard-

coded in the binaries themselves. For example, two binaries exchanging data through a

file have to know the filename (i.e., the data key) prior to transferring the data.

69

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

Data keys associated with common IPC paradigms can be used to statically track

the flow of attacker-controlled information between binaries. Below, we describe the

most common IPC paradigms employed in firmware1.

Files. Processes can share data using files. A process writes data on a given file, and

another process reads and consumes such data. The data key is the name of the

file itself.

Shared Memory. Processes can share memory regions. Shared memory can be either

backed by a file on the filesystem, or be anonymous (if two processes are in a

parent-child relationship). In the former case, the data key is represented by the

backing file name, whereas in the latter case by the virtual address of the shared

memory page.2

Environment Variables. Processes can share data via environment variables. In this

case, the data key is the environment variable name (e.g., QUERY_STRING).

Sockets. Processes can use sockets to share data with processes that reside on the same

host (Unix domain sockets with a file path) or on a different host (network sock-

1We focus on IPC mechanisms that enable rich data exchange. IPCs that do not transport data (e.g.,
signals) are not included, as they are out of our scope. Additionally, we reference UNIX-based concepts
for user-space IPC. Other systems (e.g., iOS) have analogous concepts.

2Note that, components in a “blob” can use a statically mapped region to exchange data. By us-
ing the addresses of these regions as data keys, we can reason about data flows without analyzing the
prohibitively large amount of control flow that separates the components themselves in a real-world
firmware.

70

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

ets). The socket’s endpoint (e.g., IP address and port, or file path of a Unix

domain socket) represents the data key.

Command Line Arguments. A process can spawn another process and pass data through

command line arguments. The data key is the name of the invoked program.

We represent shared data as a tuple (data key, data).

3.4 KARONTE

KARONTE is an approach that performs inter-binary data-flow tracking to automat-

ically detect insecure interactions among binaries of a firmware sample, ultimately dis-

covering security vulnerabilities. Although our system focuses on detecting memory-

corruption and DoS vulnerabilities, it can be easily extended, as discussed in Sec-

tion 3.18. KARONTE analyzes firmware samples through the following five steps (Fig-

ure 3.3):

Firmware Pre-processing. KARONTE’s input is comprised of a firmware sample (i.e.,

the entire firmware image). As a first step, KARONTE unpacks the firmware image

using the off-the-shelf firmware unpacking utility binwalk [54].

Border Binaries Discovery. The Border Binaries Discovery module analyzes the un-

packed firmware sample, and automatically retrieves the set of binaries that export the

device functionality to the outside world. These border binaries incorporate the logic

71

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

necessary to accept user requests received from external sources (e.g., the network). As

such, they represent the point where attacker-controlled data is introduced within the

firmware itself. For each border binary, this module identifies the program points that

reference attacker-controlled data (Section 3.5).

Binary Dependency Graph (BDG) Recovery. Given a set of border binaries, KARONTE

builds a Binary Dependency Graph (BDG), which is a directed graph [137] that models

communications among those binaries processing attacker-controlled data. The BDG

is iteratively recovered by leveraging a collection of Communication Paradigm Finder

(CPF) modules, which are able to reason about the different inter-process communica-

tion paradigms (Section 3.6).

Multi-binary Data-flow Analysis. Given a binary b in the BDG, we leverage our

static taint engine (see Section 3.7) to track how the data is propagated through the

binary and collect the constraints that are applied to such data. We then propagate the

data with its constraints to the other binaries in the BDG that have inbound edges from

b (Section 3.8).

Insecure Interactions Detection. Finally, KARONTE identifies security issues caused

by insecure attacker-controlled data flows, which are reported for further inspection

(Section 3.9).

KARONTE’s novelty lies in the creation of its Binary Dependency Graph and its

ability to accurately propagate taint information across binary boundaries, enabling

72

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

the detection of complex, multi-binary vulnerabilities in an efficient manner, and dras-

tically decreasing the number of false positives that would be otherwise generated.

While KARONTE focuses on inter-binary software bugs, it also performs single-binary

analysis.

Furthermore, though KARONTE detects data-flows across binaries of a firmware

sample, its generic design allows KARONTE to also reason about interactions of dif-

ferent modules of a monolithic embedded OS, as long as a separation among these

modules is present (e.g., they represent different processes at runtime), as shown in

Section 3.19. Finally, given our attacker model (Section 3.1), we assume that border

binaries are represented by network-facing binaries (i.e., binaries implementing net-

work services). For this reason, we interchangeably use the terms border binaries and

network-facing binaries.

3.5 Border Binaries Discovery

KARONTE is designed to detect vulnerabilities that may be exploited by attackers

over the network. To do so, KARONTE first identifies the set of binaries that export

network services (i.e., network-facing binaries) in a firmware sample. We leverage the

observation that network-facing binaries are the components of a firmware sample that

73

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

-

Unpacker
CPF1

CPFP

Figure 3.3: KARONTE Overview. After unpacking a firmware sample, KARONTE extracts the binaries
handling user requests, identifies their data dependencies to build the Binary Dependency Graph (BDG),
and uses its inter-binary taint analysis engine to find insecure data flows.

receive and parse user-provided data. Therefore, we identify those binaries within a

firmware sample that parse data read from a network socket.

Following Cojocar et al. [24] work, we utilize three features to identify functions

in embedded systems that implement parsers: (i) the number of basic blocks (#bb), (ii)

the number of branches (e.g., if-then-else, loops) (#br), and (iii) the number of con-

ditional statements used in conjunction with memory comparisons (#cmp). Since we

want to specifically identify input-affected network parsers, we consider two additional

features: (iv) a metric we call network mark (#net), and (v) a flag we call connection

mark (#conn).

The network mark feature encodes the probability that a parsing function handles

network messages, and it is calculated by identifying every memory comparison in

74

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

the code of the function, and comparing the referenced memory locations against a

preset list of network-encoding strings (e.g., soap or HTTP). We initialize #net to 0

and increment it for every comparison against network-encoding strings present in the

code.

The connection mark flag, instead, indicates if any data read from a network socket

is used in a memory comparison. We initialize #conn to 0 and set it to 1 if there exists

a data-flow between a socket read and a memory comparison operation.

We combine the aforementioned five features to compute the parsing score psb of a

binary b as follows:

psb = max({psj | ∀j ∈ get functions(b)}),

psj = (
∑

i∈{bb,br,cmp}
ki ∗#ij) ∗ (1 + kn ∗#netj) ∗ (1 + kc ∗#connj)

(3.1)

where each constant ki is set to maximize the parsing detection capabilities (kbb = 0.5,

kbr = 0.4, kcmp = 0.7 [24]), whereas kn and kc promote functions that refer to network-

encoding keywords and binaries that parse network data, respectively. The optimal

values for the last two constants are found empirically in Section 3.19.2. Finally, psj is

the parsing score of the j-th function of b. Note that, we introduce our two features as

multipliers in order to highlight input-affected network parsers.

Since all binaries are likely to have a score greater than zero, we need to distinguish

and separate the “most significant” scores. To this end, we leverage the DBSCAN

density-based clustering algorithm [36], which groups binaries whose scores are closely

75

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

packed together. Then, we select the cluster that contains the binary having the highest

parsing score in the firmware sample, and consider all the binaries belonging to the

cluster as the initial set of network-facing binaries.

Finally, the algorithm implemented by this module returns the unpacked firmware

sample, the set of identified network-facing binaries, and the program locations contain-

ing memory comparisons against network-encoding keywords. These memory compar-

isons represent the program locations where attacker-controlled data is more likely to

be referenced.

3.6 Binary Dependency Graph

The Binary Dependency Graph module detects data dependencies among a set of bi-

naries or components belonging to a firmware sample. Furthermore, it establishes how

data is propagated from a setter binary to a getter binary. Data propagation across dif-

ferent processes differs from data transfer during subroutine calls/returns and program-

library dependency analyses, as both of these are guided by control flow information.

For inter-process interactions, there is no control flow transfer to rely on, because af-

ter making the data available (e.g., through environment variables), processes proceed

with their execution. Since processes do not normally access other processes’ memory

regions, traditional points-to analyses are also futile.

76

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

KARONTE tackles these problems by modeling the various inter-process commu-

nication paradigms through the use of a set of modules that we call Communication

Paradigm Finders (or CPFes). KARONTE uses them to build a graph, called Binary

Dependency Graph (or BDG), which encodes the data flow information among bina-

ries within a firmware sample.

3.6.1 Communication Paradigm Finders

A CPF provides the necessary logic to detect and describe instances of a communi-

cation paradigm (e.g., socket-based communication) used by a binary to share data. To

achieve this goal, a CPF considers a binary and a program path (i.e., a sequence of basic

blocks), and checks whether the path contains the necessary code to share data through

the communication paradigm that the CPF represents. If so, it gathers the details of the

communication paradigm through the following paradigm-specific functionality:

Data Key Recovery. The CPF recovers data keys that reference data being set or re-

trieved by the binary under the associated communication paradigm.

Flow Direction Determination. The CPF identifies all the program points where data

represented by the collected data keys is accessed. If such program points exist, it

determines the role of each program point in the communication flow (i.e., setter

or getter).

77

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

Binary Set Magnification. The CPF identifies other binaries in the firmware sample

that refer to any of the data keys previously identified. These binaries are likely to

share data with the binary currently under consideration, and are thus scheduled

for further analysis.

We then combine the information gathered by the different CPFes to create edges

in the Binary Dependency Graph, recovering the data flow across different binaries.

The specifics of each CPF depend on the OS that the firmware sample runs on (e.g.,

Linux). Therefore, to maintain OS-independence and to reason about inter-process

communication paradigms when some information is missing (e.g., a firmware blob),

KARONTE uses a generic OS-independent CPF, which we call the Semantic CPF. This

CPF leverages the intuition that any communication among processes must rely on

data keys, which are often hard-coded in binaries (e.g., hard-coded addresses). To

this end, the Semantic CPF detects if a hard-coded value is used to index a memory

location to access some data of interest (e.g., attacker-controlled data). Our prototype

of KARONTE implements the Environment, File, Socket and Semantic CPFes (details

in Section 3.10).

3.6.2 Building the BDG

KARONTE models data dependencies among binaries through a disconnected cyclic

digraph [137], called the Binary Dependency Graph (or BDG). A BDG, G, of the

78

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

Algorithm 1 Binary Dependency Graph Algorithm
function BDG(int locs, B, fw)

comm info← {}
E ← {}
for each b ∈ B do

locs← get locs(int locs, b)
for each loc ∈ locs do

f addr ← get faddr(loc)
for each block ∈ explore paths(f addr) do

if (address(block) == loc) then
buf ← get buf(loc)
apply taint(buf)

end if
if matches CPF (block) then

CPFp = get CPF (block)
k ← find data key and role(block, CPFp)
Bnew, int locs new ← get new binaries(fw, k, CPFp)
update binaries(B, int locs,Bnew, int locsnew)
comm info← comm info ∪ {b, block, CPFp, k}

end if
end for

end for
end for
for each {b, block, CPFp, k} ∈ comm info do

if is setter(block, k) then
getters← get getters(comm info, k, CPFp)
E ← E ∪ create edges(b, getters)

end if
end for
return (B,E)

end function

set of binaries B is denoted as G = (B,E), where, E is the set of directed edges.

Each directed edge e ∈ E from b1 ∈ B to b2 ∈ B is represented by a triplet e =

([b1, loc1, cp1], [b2, loc2, cp2], k), which indicates that the information associated with

the data key k (e.g., an environment variable name) can flow from binary b1 at location

loc1 (e.g., a program point containing a call to the setenv function) via the commu-

nication paradigm cp1 (e.g., the OS environment), to the binary b2 at location loc2 (e.g.,

a call to the getenv function) via the communication paradigm cp2.

The algorithm to recover the Binary Dependency Graph (Algorithm 1) begins by

considering the information gathered by the Border Binaries Discovery module: (i)

79

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

the unpacked firmware sample in analysis (fw), (ii) the border binaries (B), and (iii)

a set of program locations (int locs) performing memory comparisons. Then, for

each binary b in B, we consider each location loc in int locs belonging to b (func-

tion get locs), and we leverage our taint analysis engine (Section 3.7) to bootstrap

a symbolic path exploration starting from the beginning of the function containing loc

(function explore paths). When the analysis reaches loc, we taint the memory location

buf being referenced, i.e., the memory location being compared against the network-

encoding keyword (functions get buf and apply taint).

In each step of the path exploration (i.e., for each visited basic block), we invoke

each of our CPF modules, which analyze the current path and use the taint information

(propagated by the taint engine during the path exploration) to detect if the binary b

is sharing some tainted data d. If a CPFp matches, i.e., it detects that the analyzed

binary relies on the communication paradigm p to share some data, we leverage CPFp

to recover all of the details of the communication paradigm instance in use. More

precisely, the CPFp recovers the data key k used to share data through p and infer the

role (i.e., setter or getter) of the binary for k (function find data key and role) and

finds other binaries within the firmware sample that might communicate through this

channel (function get new binaries). Newly discovered binaries are then added to the

overall set of binaries to analyze. Note that, when any of these new binaries Bnew is

scheduled to be analyzed, the analysis has to know where to apply the taint initially.

80

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

In other words, we have to detect where the shared data is initially introduced in these

new binaries. Therefore, for each newly added binary ba, the CPFp also retrieves

the program points int locsnew where the data key k is referenced, and add them to

int locs. These last two operations are performed by the function update binaries.

Finally, for each analyzed binary b, we consider each CPF (cp) that matched for b over

some key k, and use cp to retrieve the role of b for k (e.g., setter). Then, we create

an edge between b and any other binaries that have the opposite role of b for k (e.g.,

getter).

To demonstrate the BDG algorithm, we again refer to Listing 3.1. The BDG algo-

rithm starts by considering the memory comparison against a network-encoding key-

word (Line 3). After inferring that the variable p is used in the memory comparison,

we taint the memory location it points to, and bootstrap the intra-procedural taint anal-

ysis exploration, starting from the function parse_URI (Line 1), and propagating

the taint by following the control flow of the program. When the taint exploration

reaches the execve function call (Line 13), the Environment CPF detects that an-

other binary is being executed, and that the setenv function is used to set the data

key QUERY_STRING. Therefore, the Environment CPF establishes that the binary

in analysis is a setter for QUERY_STRING. Then, the Environment CPF scans the

firmware sample and finds other binaries relying upon the same data key, and adds

them to the set of binaries to analyze. Finally, for each newly added binary, the En-

81

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

vironment CPF retrieves the code locations where the data key QUERY_STRING is

referenced (e.g., a call to the function getenv("QUERY_STRING")).

3.7 Static Taint Analysis

KARONTE uses taint propagation to detect multi-binary vulnerabilities. This Sec-

tion describes the operation of the underlying taint engine, and the next Section dis-

cusses how KARONTE combines the taint engine with the BDG, described previously,

to achieve such detection.

KARONTE’s taint engine is based on BOOTSTOMP (see Chapter 2). Given a source

of taint s (e.g., a function returning untrusted data) and a program point p, our taint en-

gine performs a symbolic path exploration starting from p, and, every time s is encoun-

tered, the taint engine assigns a new taint ID (or tag) to the memory location receiving

data from s. KARONTE’s taint engine propagates taint information following the pro-

gram data flow, and it untaints a memory location (i.e., by removing its taint tag) when

the memory location gets overwritten by untainted data, or when its possible values are

constrained (e.g., due to semantically equivalent strlen and memcmp functions).

Our taint engine presents two improvements compared to related work: (i) it includes a

path prioritization strategy, and (ii) it introduces the concept of taint tag dependencies.

82

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

1 char* parse(char *start) {
2 char* end = start + strlen(start) - 1;
3 while (start < end)
4 switch (*start[0]) {
5 case '=':
6 return start + 1;
7 case ';':
8 return NULL;
9 default:

10 start ++;
11 }
12 }
13 void foo() {
14 char dst[512], *user_input = get_user_input();
15 char *cmd = parse(user_input);
16 size_t n = strlen(cmd);
17 if (n >= 512)
18 return -1;
19 strcpy(dst, cmd);
20 }

Figure 3.4: Path prioritization and taint dependencies use case.

The path prioritization strategy tackles the undertaint problem, which affects taint

engines based on path exploration when dealing with implicit control flows [51], by

prioritizing more interesting paths. In the scope of a taint analysis, a path p1 is consid-

ered to be more interesting than a path p2 if a variable of interest is tainted in p1, and

untainted in p2.

Consider the example in Listing 3.4, and assume that the variable user_input

(Line 14) points to tainted data. When the function parse is invoked, the variable

start (Line 1) aliases user_input (i.e., they point to the same memory location),

and, therefore, it points to tainted data. The function parse contains, potentially, an

infinite number of paths: If the variable start is represented by an unconstrained

symbolic expression, there is always a possible path passing through the default

statement (Line 9) to the head of the while loop (Line 3). Among these paths, only

83

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

those passing through the first case statement (Line 5) would propagate the taint outside

the function. Therefore, an analysis that does not explore these paths would mistakenly

establish that user_input cannot affect the variable cmd (Line 15).

Our path prioritization strategy aims to valorize those paths within a function that

potentially propagate the taint also outside the function (as the paths passing through

the first case statement in Listing 3.4). As expected, we noticed that network-facing

binaries contain various sanitization functions that can cause the issue just discussed. In

Section 3.10, we describe the implementation details of our path prioritization feature.

Finally, in our taint engine, an analyst can create dependencies among tainted vari-

ables having different tags (taint tag dependencies). Tracking these dependencies plays

an important role in having an effective untaint policy in a multi-tag taint tracking sys-

tem, thus alleviating the overtainting problem [111].

To demonstrate this, consider again the example in Listing 3.4, and assume that

there exists an untaint policy to remove a taint tag when a variable is explicitly con-

strained within a range of values. First, as get_user_input generates untrusted

data (Line 14), a new taint tag t1 is created and assigned to user_input. If the

function strlen is not analyzed (e.g., its code is not available or the call is not fol-

lowed to keep the overall analysis tractable), following the semantics of a multi-tag

taint tracking, the variable n gets tainted using a different tag t2. When the taint execu-

tion engine reaches the if statement (Line 17), following the untaint policy in use, the

84

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

variable n is automatically untainted by removing the tag t2. Given that the taint tag of

user_input (t1) is different than n’s tag (t2), user_input is not untainted, and

the call to the unsafe strcpy (Line 19) could cause a false positive to be generated.

This behavior emerges because some functions that semantically constrains tainted data

might not be analyzed (due to lack of code, or limits of the employed analysis). The

solution we propose is to maintain the information that the taint tag of user_input

(i.e., t1) depends on the taint tag of n (i.e., t2), and, to untaint user_input when

n is untainted. We say that a taint tag t1 depends on a taint tag t2, if removing t2 (i.e.,

untainting the variable with taint tag t2) provokes t1 to be removed. Of course, the taint

tag t1 might depend on multiple taint tags. In this case, if all the tags that t1 depends

on are removed, t1 is removed too. Our prototype automatically finds semantically

equivalent memcmp and strlen functions, and applies taint tag dependencies (see

Section 3.10).

3.8 Multi-binary Data-flow Analysis

To discover insecure interactions among binaries and find vulnerabilities, we need

to recover the data-flow details of the binaries in a BDG. Enumerating all the possible

inter-binary paths in a BDG leads, in general, to the path explosion problem [18].

85

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

Our key insight is that the inter-binary paths more likely to lead to bugs are those

that apply less strict constraints on the user-provided data d (i.e., the set of values that

d can assume has a higher cardinality). To retrieve such paths, we collect the sets of

constraints that a binary applies to d across different program paths, and propagate to

other binaries only the least restrictive set of constraints.

To do so, we create a graph that we called the Binary Flow Graph (or BFG), which

extends the BDG with the least strict set of constraints applied to the data shared among

multiple binaries. In the BFG, an edge ([b1, loc1, cp1, c1], [b2, loc2, cp2, c2], k) indicates

that the data associated with the data key k can flow from the binary b1 at location loc1

via the communication paradigm cp1 with the set of constraints c1 to the binary b2 at

location loc2 via the communication paradigm cp2 with the set of constraints c2. The

BFG building algorithm is based on the notion of chaotic iteration [4], and is composed

of two phases.

Initialization. We consider every edge in the BDG and create a new edge setting

c1 = c2 = ⊥ (⊥ means ”uninitialized”). Next, we consider every edge e whose setter

(i.e., b1) is a border binary, and retrieve the variable var1 that contains the data being

shared at location loc1. Then, we use our taint engine to explore the paths between the

entry point of the function containing loc1 and loc1 itself, and collect, for each path,

the set of constraints applied to var1. For instance, if var1 maximum length is checked

(e.g., through a strlen) against a constant value, we collect such constraint. Then,

86

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

we select the least strict set of constraints l1, and set c1 = l1. Finally, we add e to a set

wset, which is used during the second phase.

Constraint Propagation. We consider every edge ew ∈ wset, and set c2 = c1, thus

propagating the constraints from the setter binary to the getter binary. We then retrieve

the variable var2 used by b2 to receive the data at loc2 and find the least restrictive set

of constraints l2 that the binary applies to var2 (relying on the same approach used to

find l1), and set c2 = c2 ∪ l2.

As b2 might further share the data, we also determine the additional constraints that

b2 applies to such data before re-sharing it. To do this, we collect every edge er where

the binary b2 is the setter. Then, we run our taint engine to find a path between the

program point where the binary previously received the data (i.e., loc2 of edge ew) and

the location where it shares it further (i.e., loc1 of edge er) and find the least strict set

of constraints lr applied to var2 along these paths. If we cannot find a path between

these two program points (e.g., due to limits of the underlying analyses), we determine

lr using the same approach used to find l1 (i.e., starting from the entry point of the

function containing loc1 of er). Finally, we consider the constraints c∗ = lr ∪ c2 and the

constraints for the setter of er. If the latter set is uninitialized (i.e., c1 = ⊥ for er) or

more restrictive than c∗, we substitute it with c∗ and add er to wset—thus keeping the

least restrictive constraints. We iterate this phase until wset is empty.

87

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

3.9 Insecure Interactions Detection

The Insecure Interactions Detection module leverages the BFG to find dangerous

data flows and detect subsets of two classes of vulnerabilities: (i) memory-corruption

bugs (e.g., buffer overflows) and (ii) denial of service (DoS) vulnerabilities (e.g., attacker-

controlled loops). To detect the former class, we first find memcpy-like functions within

a binary, that is, every function that is semantically equivalent to a memcpy (Sec-

tion 3.10). Then, if attacker-controlled data unsafely reaches a memcpy-like function

(e.g., without being sanitized), we raise an alert. To detect the latter class of vulnerabil-

ities, we retrieve the conditions that control (guard) the iterations of a loop. Then, we

check whether their truthfulness completely depends on attacker-controlled data, and,

if so, we raise an alert. We refer to both memcpy-like functions and attacker-controlled

loops with the general term sinks.

The Insecure Interactions Detection phase works as follows. First, we consider ev-

ery edge ef in a BFG, and for each node (b, loc, cp, c) ∈ ef , we leverage the static

taint engine to bootstrap a symbolic path exploration from the function f containing

loc. Then, when we encounter the location loc, we rely on the provided CPF cp to re-

trieve the address of the buffer buf that references attacker-controlled data at location

loc (e.g., the memory location returned by getenv), and apply the taint to it. Fur-

88

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

thermore, at each step of the path exploration, we collect any constraints on buf (in a

similar way as explained in Section 3.8) and add them to c.

If a sink is encountered during the path exploration, we check whether it contains

tainted data. If the sink is a loop, and one of its conditions completely relies on tainted

variables, we raise an alert (for a possible DoS vulnerability). On the other hand, if the

sink is a memcpy-like function, we retrieve the address of the destination buffer bdst.

Then, we retrieve the allocation point of bdst (e.g., its position in the function’s stack)

and estimate its boundaries (e.g., the offset of the surrounding variables in the stack) to

recover its size. If the size of buf (given by its constraints c) is greater than the size

of bdst, we raise an alert, as it means that the copy operation might produce a buffer

overflow.

Finally, we consider every disconnected node in the BFG, and perform a single-

binary static analysis.

3.10 KARONTE Implementaion Details

In this Section, we present the implementation details of our prototype of KARONTE,

which is based on angr [116], and we show the details of a vulnerability discovered by

our prototype.

89

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

3.11 Functions Identification

Our prototype of KARONTE scans all the functions in the binary under analysis to

find three types of functions: (i) functions that are semantically equivalent to memory

comparisons (e.g., memcmp), which we term memcmp-like functions, (ii) functions

that copy the content of a memory location to another (e.g., memcpy), which we term

memcpy-like functions, and (iii) functions that calculate the length of a buffer, which

we term strlen-like functions.

Intuitively, a memcmp-like function f should contain a loop used to compare the

memory locations pointed by different function parameters of f . To find these func-

tions, we analyze each function f of a binary b that contains at least a loop. In particu-

lar, we linearly scan the instructions in the body of the loop, and retrieve each program

point p containing a memory comparisons instruction (e.g., using an opcode from the

x86 cmp instruction family). Then, we compute a static backward slice from p up

to f ’s entry point, and inspect f ’s arguments to check whether they could affect the

operands of the considered memory comparison at the program point p. If so, we con-

sider f a candidate memcmp-like function. Finally, we calculate the size of f (in terms

of the number of basic blocks), and adopt BootStomp’s threshold 2 to filter out as many

false positives as possible.

90

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

The approach to find strlen-like functions works in a very similar manner. The

difference is that we also expect these functions to contain a counter that is incremented

at each iteration of the loop.

Finally, to automatically identify memcpy-like functions, we adopt the same ap-

proach proposed in BOOTSTOMP 2.

If a function body is not available (i.e., the function is implemented in an external

library not present in the firmware sample), we apply string matching heuristics on the

name of the function to detect whether it belongs to one of the three function types just

described.

Furthermore, as an optimization, we abstract the memcpy-like, memcmp-like, and

strlen-like functions by providing function summaries, which we execute every time

one of these functions is encountered during KARONTE’s symbolic path exploration

(e.g., during the BDG algorithm). With this optimization, we alleviate the path explo-

sion problem and speed up the overall analysis, while maintaining unaltered its preci-

sion.

3.12 Border Binaries Discovery

As stated in Section 3.5, the connection mark (i.e., #conn) is used as a flag, whereas

the network mark (i.e., #net) is used as a counter. We made this decision as we found

91

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

that, in practice, calculating the connection mark feature is computationally harder than

calculating the network mark.

To calculate the network mark, we need to retrieve all the memory comparisons

within a binary and consider those that might refer to hard-coded network-related

strings. We found that finding memory comparisons that refer to these type of strings is

computationally easy, as, in practice, the addresses of these strings are referred within

the basic block containing the call to the memory comparison itself.

On the other hand, to set the connection mark, we have to determine whether any

data read from a network socket (i.e., the source) is passed to a memcmp-like function

(i.e., the sink). This would involve enumerating all the possible program paths between

two arbitrary program points (i.e., a read from a socket and a call to a memcmp-like

function), which is, in the general case, unfeasible [18]. Also, in principle, we do

not know if a binary contains more sources than sinks, and, therefore, a classic forward

taint analysis from a source to a sink might incur in scalability issues [81]. Therefore, to

alleviate these problems and increase the chances to find a path between a source and a

sink, we leverage our static taint engine and perform a combination of both forward and

backward static taint analyses. In particular, we bootstrap a forward taint analysis from

each program point containing a source (e.g., a recv), and a backward taint analysis

from each program point containing a sink (i.e., a memcmp-like function). Also, to keep

the analyses tractable, we constrain the number of functions traversed by each analysis

92

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

to a fixed value nf (set to 5 in our experiments), and limit the symbolic exploration to

a time limit of 10 minutes.

Nonetheless, we might fail to find a path between a source and a sink due to, for

instance, an unresolved indirect control-flow transfer. Therefore, if we detect any im-

precision while analyzing a function f of a binary b, we consider the analysis for f to

be incomplete. If the number of functions not completely analyzed overcomes a fixed

threshold (set to 50% in our experiments), we take the conservative decision to set the

connection mark. Also, as the connection mark is operating system (OS) dependent

(i.e., the analysis should know the syscall number used to read data from a socket), if

the OS is unknown (e.g., in case of a firmware blob) we simply set the connection mark.

Finally, the feature cmp in our Parsing Score (see Equation 3.1) represents an adap-

tation for binaries of the feature br fact presented by Cojocar et al. [24], and it is cal-

culated by incrementing its value every time we find a memory comparison operation

against any string.

3.13 Communication Paradigm Finders

As stated in Section 3.6.1, KARONTE provides a set of CPFes to recognize the IPC

paradigms, whose specifics depend on the OS of the firmware sample under analysis.

Furthermore, to maintain our prototype OS-independent, and to make it able to reason

93

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

about inter-process communication paradigms when some information is missing (e.g.,

embedded Linux distributions whose binaries are stripped by their symbols or firmware

blobs), we provide our prototype with a generic CPF called the Semantic CPF, which

abstracts from the underlying OS.

Since OS-dependent CPFes work in a similar fashion, we describe the Environment

CPF, as an example of OS-dependent CPF, and the OS-independent Semantic CPF.

Environment CPF. This CPF detects whether user data is shared through the operating

system environment. Given a program path (i.e., a sequence of basic blocks) between

two program points p1 and p2, the Environment CPF checks whether there exists a

block bb containing marks indicating that another binary is being executed (e.g., a call

to execve). If so, this CPF scans each basic block in the program path prior to bb,

and collects every program point pc that contains a call to a function setting (or getting)

environment variables (e.g., setenv or getenv). Finally, the Environment CPF

considers each function f containing pc, and performs a reach-def analysis from f ’s

entry point to pc itself to determine the values of the arguments of the function called

at pc (e.g., the string QUERY_STRING in setenv("QUERY_STRING")). Finally,

the Environment CPF considers these values as data keys (e.g., QUERY_STRING).

The binary set magnification functionality (see Section 3.6.1) infers the possible

names of the binaries that are invoked in bb. To do this, we perform a reach-def analysis

starting from the entry point of the function containing bb to bb itself, and we collect

94

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

the strings used as arguments in the function call in bb. Finally, if we cannot resolve the

names of the binaries being executed (e.g., because they are calculated at runtime), the

Environment CPF finds all the binaries within the firmware sample that rely on the data

keys previously recovered. We do this by retrieving all the strings in the binaries of the

firmware sample, and selecting those that have at least one of the searched data keys.

Semantic CPF. Our key observation is that any communication among different pro-

cesses must rely on the concept of data keys. That is, there must be some known

information that is used as a reference to set, or get, some data d for another process to

be accessed. Furthermore, as explained in Section 3.3, data keys are often hard-coded

in the binary itself as constant values (e.g., hard-coded strings).

The Semantic CPF leverages this intuition, and given a program path, it checks

whether a constant value k is used to index a memory location to set (or to get) some

data of interest (e.g., attacker-controlled data). If so, k is considered as a candidate

data key, and the binary under analysis as a potential setter (or getter) for k. A typical

example of inter-process communication detected by the Semantic CPF is given by

memory-mapped I/O in embedded devices. In this setting, peripherals’ input and output

channels are mapped to predefined addresses in memory, which are hardcoded in the

firmware components that need to access them.

Given a function fc to analyze, this CPF applies two different approaches to infer if

a data key is used as a reference (base or index) to manage data.

95

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

First, we taint each argument of fc that points to constant data (e.g., a string in a

.ro section of the binary), using different taint tags. Then, we examine every load (or

store) in fc to check whether tainted variables are referenced to read (or write) from a

memory location m. For example, if a tainted variable is used as an address to write at

location m, we consider fc as a setter for the data key.

Second, if the first step does not yield a positive result, we check the structure of

the function fc itself. In particular, we assume that any set or get oriented functions

should look for an entry point into a data structure relying on a provided key, to set, or

get, some value. To achieve this, we assume that such a function contains a simple loop

with a memory comparison function (e.g., memcmp-like functions) that has a parameter

that points to tainted data. If these conditions are met, the Semantic CPF considers the

function to be a set or get oriented function. To distinguish between the two, we scan

the basic blocks corresponding to the true branch of the memory comparison function

call and checks whether any of the fc’s arguments are set to a new value. If a new value

is set, we identify the function fc as a setter. In the case where a value is returned, we

label the function as a getter.

Consider the example in Listing 3.5, which represents a snippet of code of a set-

ter function found in one of the firmware samples in our dataset. The stack variable

at offset -32 (R11 represents the base pointer) points to a hard-coded string (i.e., a

sequence of ASCII characters null-terminated), which is, therefore, tainted by the Se-

96

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

1 ; .text section
2 loc_A598:
3 LDR R0, [R11, -28] ; destination buffer
4 LDR R1, [R11, -32] ; data key pointer
5 LDR R2, [R11, -24] ; number of bytes
6 BL 0x9554 ; call to a memcpy-like
7 ; function
8 LDR R2, [R11, -28]
9 LDR R3, [R11,-24]

10 ADD R3, R2, R3
11 MOV R2, 61 ; append '='
12 STRB R2, [R3]
13 LDR R3, [R11, -24]
14 ADD R3, R3, 1
15 LDR R2, [R11, -28]
16 ADD R3, R2, R3
17 MOV R0, R3 ; destination
18 LDR R1, [R11, -36] ; source (data value)
19 LDR R2, [R11, -16] ; number of bytes
20 BL 0x9554 ; call to a memcpy-like
21 ; function
22 LDR R2, [R11, -24]
23 LDR R3, [R11, -16]
24 ADD R3, R2, R3
25 ADD R3, R3, 1
26 LDR R2, [R11, -28]
27 ADD R3, R2, R3
28 MOV R2, 0

Figure 3.5: Snippet of code that uses a data key to set a data value into a local structure.

mantic CPF. Due to a function semantically equivalent to memcpy (Line 6), the taint

gets propagated to the destination buffer (stack variable at offset -28). Then, after con-

sidering its length, the character “=” is appended to the destination buffer (Line 11) and

a value (stack variable at offset -36) is appended to it through the memcpy-like

function call (Line 20). Finally, since a hard-coded value is used as the offset (through

its length) to copy arbitrary data into memory, the Semantic CPF considers this func-

tion as a candidate setter function. After manual verification, we found that the above

example was indeed setting data to be used by another process, and that the stack vari-

able at offset -36 (Line 18) was the value of the data.

97

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

As an optimization, we leverage debugging and loading symbols (when available)

to drive our Semantic CPF to interesting functions. For example, if a function name

contains the keyword ’send’ we mark it as a candidate set function, and consider it for

further analysis.

3.14 Binary Dependency Graph Algorithm

As explained in Section 3.6, KARONTE detects if a border binary shares user-

provided data by: (i) considering the set of memory comparisons retrieved by the

Border Binaries Discovery algorithm, (ii) using our taint engine to taint the involved

memory locations, and, (iii) performing a taint analysis on the border binary to detect

whether the binary shares some tainted data. This procedure might involve enumerat-

ing all the possible program paths in the border binary, and, therefore, it might lead

to the path explosion problem. Therefore, to keep the analysis tractable, we run our

taint engine up a certain time limit (set to 10 minutes in our experiments). However, as

some paths might be left unexplored, our prototype might miss some valid data flows

between binaries, and our BDG might not contain some valid edges. Therefore, in

order to increase the path coverage within a prefixed time limit, we apply the taint to

each function of a border binary that refers to a network-encoding string. This solution

might involve more false positive edges within a BDG (thus affecting its soundness),

98

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

but it decreases the likelihood of false negative edges. This heuristic gave us noticeable

improvements in practice, as the program points where data is read from sockets (e.g.,

recv) might be distant (in terms of the number of instructions in an execution trace)

to those where such data is shared (e.g., setenv). However, as network-encoding

strings might be used for other purposes within a binary (e.g., as data keys), we are able

to alleviate this problem by considering as a source of taint every function that refers to

network-encoding strings.

3.15 Static Taint Analysis

Our taint engine mainly introduces two contributions: (i) taint tag dependencies,

and (ii) a path prioritization strategy.

To add taint tag dependencies, we enhanced the angr’s symbolic state module with

an additional data structure that maps each taint tag to its dependencies. When a sym-

bolic expression e has to be untainted, we retrieve its taint tag te, and all the taint tags

tdep that depend on te. Then, we consider each taint tag td in tdep, and check whether

it depends on any other taint tag other than te. If not, we remove the taint tag td (thus

untainting the tainted symbolic expressions represented by td). Finally, we remove

te, thus effectively untainting e. Note that, taint tag dependencies based on memory

comparisons (as explained in Section 3.7) are created automatically.

99

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

Our path prioritization strategy aims to prioritize those paths within a function that

potentially return tainted variables. Given a function f to symbolically explore, we

build its control flow graph (CFG), and we retrieve all the exiting basic blocks, that

is, those containing a return statement r. For each of these basic blocks, we perform

a static reach-def analysis from f ’s entry point up to r, and collect all the possible

returning values. We then prioritize those paths that do not always return constant

values.

3.16 Multi-binary Data-flow Analysis

The cornerstone of the multi-binary data-flow analysis module is to estimate the

size of the buffers used to send (or receive) attacker-controlled data. Our prototype

provides two sub-modules for this task: the stack-size finder and the heap-size finder to

detect the size of buffers allocated on stack and heap, respectively.

Given a function fs and a buffer b allocated at offset bs on fs stack, the stack-size

finder scans fs body, and collects the offsets of the variables allocated on fs stack.

Then, this sub-module sorts the stack offsets in ascending order, and it picks the offset

bz right after bs (remember that the stack grows downward). Finally, the stack-size

finder considers the buffer b as big as |bz − bs|.

100

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

On the other hand, given the address bh of a heap-allocated buffer b, and a function

fh allocating b, the heap-size finder leverages our static taint engine to taint bh, and

bootstraps a symbolic path exploration from fh’s entry point. For each basic block

encountered during the symbolic path traversal, this sub-module detects whether the

basic block contains a call to a heap allocation function fa (e.g., malloc). If any of

fa’s arguments is tainted, or fa’s returning value gets assigned to a tainted memory lo-

cation, the heap-size finder considers the call to fa for further inspection. In particular,

it considers the symbolic expression of the fa’s argument that represents the allocated

size (e.g., the first argument in malloc), and leverages the z3 3 theorem solver to con-

cretize its value, thus retrieving the buffer b’s allocated size. If the symbolic expression

can be concretized to multiple values, we conservatively consider the greatest value.

3.17 Vulnerability Example

We provide the details of one of the vulnerabilities discovered by KARONTE 4

for the D-Link 880 firmware sample. This firmware is used on the D-Link Wireless

AC1900 WiFi Gigabit routers, and it is composed of 129 different binaries executing

on a Linux-based filesystem.

3https://github.com/Z3Prover/z3
4CVE-2017-14948

101

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

1 void add_data_key(e, key, data) {
2 int nk = strlen(key);
3 int nd = strlen(data);
4 char* tmp = (char*) malloc(nk + nd + 3)
5 e->vars = realloc(e->vars, e->size + nk + nd + 3);
6 memcpy(tmp, key, nk);
7 tmp[nk] = "=";
8 memcpy(tmp[nk + 1], data, nd);
9 e->vars[e->n_vars] = tmp;

10 e->n_vars ++;
11 // ...
12 }
13
14 int do_serve(r){
15 env_struct* e;
16 add_data_key(e, "CONTENT_TYPE", r->content_type);
17 // ...
18 exec_bin(e, "fileaccess.cgi");
19 }
20
21 void parse_req(char* raw_data, usr_req* r){
22 while (raw_data && *raw_data) {
23 char *s = get_next_field(raw_data);
24 // ...
25 if (!strncmp(s, "Content-Type", 12)) {
26 // set content type info in r
27 }
28 // ...
29 }
30 }
31
32 void serve_request() {
33 usr_req* r;
34 char* raw_data;
35 raw_data = get_req_socket();
36 parse_req(raw_data, r);
37 do_serve(r);
38 }

Figure 3.6: Decompiled snippet of code of httpd.

Two of the binaries involved in handling user’s requests are the binary httpd and a

binary called fileaccess.cgi. The former receives user’s data from the network,

whereas the latter uses such data to perform file operations.

A simplified code of httpd is shown in Listing 3.6.

First, httpd calls the function get_req_socket (Line 35) to receive user re-

quests from the network, and stores them in the raw_data variable.

102

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

1 void get_content_type(char* dst) {
2 const char *haystack = getenv("CONTENT_TYPE");
3 char *haystacka;
4 haystacka = strstr(haystack, "boundary=");
5 // ...
6 strcpy(dest, haystacka + 9); // buffer overflow
7 }
8
9 int uploadfile_handler() {

10 char buff[256];
11 get_content_type(buf);
12 // ...
13 }

Figure 3.7: Decompiled snippet of code of fileaccess.cgi.

The content of the request is parsed by the function parse_req (Line 36), which

also properly sets an internal data structure r (Line 26). Note that, the memory com-

parison contained in function parse_req (Line 25) refers to attacker-controlled data.

This memory comparison is returned by our Border Binary Discover module (Sec-

tion 3.5).

Then, httpd calls the function do_serve (Line 37), which prepares the execu-

tion environment for fileaccess.cgi and executes it. In particular, do_serve

(Line 14) uses the function add_data_key (Line 16) to set the local variable e with

attacker-controlled data. Note that, add_data_key (Line 1) does not impose any

constraints on the size of the attacker-controlled data: it allocates a buffer tmp (Line 4)

to accommodate arbitrarily long data. In our prototype, the function add_data_key

was recognized by our Semantic CPF to be a setter for httpd.

Finally, the binary fileaccess.cgi is executed (trough exec_bin), and the

variable e is used as its execution environment.

103

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

When fileaccess.cgi is executed (Listing 3.7), if the user’s request involves

uploading a file, the function uploadfile_handler is executed (Line 9). This

function allocates a buffer of 256 bytes on the stack (Line 10), and then calls the func-

tion get_content_type to retrieve the content type of the user’s request (at Line

1).

Unfortunately, this function contains a bug. In fact, if the variable haystack

(which points to the environment variable identified by the data key CONTENT_TYPE)

contains the string "boundary=" followed by at least 257 characters, the strcpy

function call (Line 6) will provoke a buffer overflow. KARONTE automatically identi-

fied this bug, and we reported it to D-Link, which promptly fixed the issue.

3.18 Discussion

In this Section, we discuss some key points of our system.

As with any other path-based exploration analyses, KARONTE suffers from the path

explosion problem. In our prototype, we limit path explosion, while increasing pre-

cision, by: (i) providing precise taint propagation policies (e.g., function calls with

no tainted arguments are not always followed, depending on call-stack depth), (ii) us-

ing timeouts (each symbolic path exploration is performed up to a certain time limit),

104

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

(iii) limiting loop iterations, and (iv) automatically creating function summaries (as

explained in Section 3.10).

Our prototype may generate both false positives and false negatives. They are due

to the fact that taint information might not be correctly propagated to unfollowed paths

(e.g., due to time, call-stack depth, or loop constraints), or imprecisions of the under-

lying static analysis tool (i.e., angr), as shown in Section 3.19. This might result in

incomplete BDGs, and, therefore, some security vulnerabilities might be left undiscov-

ered. However, KARONTE alleviates this problem by generating taint tag dependencies

(see Section 3.7).

Though by default, KARONTE finds buffer overflows and denial-of-service vulner-

abilities, its design allows an analyst to support different types of vulnerabilities. The

Insecure Interactions Detection algorithm (Section 3.9) relies on a set of detection mod-

ules designed to use taint information to recognize specific classes of vulnerability. For

instance, an analyst can extend our system to find use-after-free bugs by providing a

new detection module, such as [38].

3.19 Evaluation

In this Section, we first evaluate each phase of KARONTE’s algorithm on several

of the latest firmware samples available at the time of writing. Then, we evaluate

105

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

Table 3.1: Results on our dataset of current-version firmware samples. For each vendor we report the
device series, the number of firmware samples, and those samples whose network services are handled
by one and multiple binaries, respectively, the total number of binaries, the average number of border
binaries, the number of alerts our prototype generated, the average execution time, the number of true
positives, and the number of bugs retrieved by tracking the data-flow through one or more binaries.

Vendor Device Series # Firmware # Single # Multi # Binaries Avg # Border #Alerts Avg Time # Bugs # Single Binary # Multi-binary

Samples Binary Binaries Binaries [hh:mm:ss] Vulnerabilities Vulnerabilities

NETGEAR R/XR/WNR 17 12 5 4,773 7 36 17:13:45 23 10 13

D-Link DIR/DWR/DCS 9 4 5 1,290 5 24 14:09:12 15 0 15

TP-Link TD/WA/WR/TX/KC 16 16 0 1,769 5 2 1:30:16 2 2 0

Tenda AC/WH/FH 7 4 3 734 5 12 1:01:22 6 0 6

Huawei ALE-L23 1 1 0 1 0 6 4:04:37 4 4 0

Nvidia Nexus 9 1 1 0 1 0 0 0:25:01 0 0 0

Qualcomm - 1 0 1† 1 0 0 2:28:27 0 0 0

Qualcomm* - 1 0 1† 1 0 7 5:03:32 1 1 0

Total - 53 38 15 8,565 279 87 49:09 51 17 34

†: The firmware sample was manually separated into distinct components.

KARONTE’s performance using a dataset from related work [20]. We implemented

a prototype of KARONTE on top of angr [116], and, in particular, our taint engine on

top of BOOTSTOMP (see Chapter 2).

3.19.1 Datasets

We evaluated our prototype of KARONTE on both Linux-based firmware samples

and firmware blobs.

Recent Linux-based Firmware. We selected four major IoT vendors that make the

firmware of their devices available for download: NETGEAR, TP-Link, D-Link, and

Tenda. Then, we scraped their official websites to collect the available firmware, for a

total of 112 different products. Unfortunately, several firmware samples were not avail-

106

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

able for download or packaged with proprietary algorithms. We eventually successfully

collected 49 different firmware samples.

Firmware Blobs. We used the BOOTSTOMP dataset, which provides us with the

ground truth for our approach. BOOTSTOMP’s dataset is composed of 5 firmware sam-

ples. In particular, it contains two versions of Qualcomm’s Little Kernel (or LK): the

most recent at the time of publication, and a version (not specified) that was released

before 2016-07-05 that contains a known vulnerability. Throughout this work, we refer

to the latter with a *. Also, as these firmware blobs receive data from persistent storage

(rather than from the network), we modified our Border Binaries Discovery module

to accommodate BOOTSTOMP’s approach to identifying procedures that read from or

write to the hard drive. Finally, we did not consider the Mediatek bootloader because

angr fails to analyze it, as explained in Chapter 2.

Table 3.1 shows our dataset of 53 firmware images (the combination of the Linux-

based and firmware blobs datasets).

Large-scale Dataset. To measure the scalability of KARONTE, we obtained Firma-

dyne’s dataset [20], and considered the firmware samples whose architecture is sup-

ported by BOOTSTOMP (i.e., ARM, AARCH64, and PowerPC). We did not consider

firmware samples for MIPS architectures, as angr only partially supports MIPS bina-

ries, and some of its analyses might yield imprecise results in these cases (as explained

in Section 3.19.3). This limitation is introduced by the employed tool, and not by

107

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

Table 3.2: Comparative Evaluation. Number of alerts generated for each step of KARONTE. For each
vendor, we report the average values.

ALL† PARSERS BDG KARONTE

Vendor Ana. Bin‡ No. Alerts Time No. Bin No. Alerts Time No. Bin No. Alerts Time No. Bin No. Alerts Time

NETGEAR 71 729 7 days 7 312 13:53 h 8 443 25:31 h 8 2 17:13 h

D-Link 80 811 7 days 5 205 12:00 h 6 294 14:33 h 6 3 14:09 h

TP-Link 181 819 7 days 5 71 7:44 h 5 86 6:37 h 5 0 1:30 h

Tenda 41 474 7 days 5 154 10:41 h 6 175 11:07 h 6 2 1:01 h

Total 2,424 20,931 28 days 279 9,363 44:18 h 312 12,778 48:57 h 312 74 33:57 h

†: Experiment conducted up to 7 days.

our approach, which is architecture-independent. Overall, this dataset consists of 899

firmware samples from 21 different vendors (Table 3.3).

3.19.2 Border Binaries Discovery

First, we established the optimal values for kn and kc. We randomly selected one

firmware sample and manually investigated its border binaries. We identified three bi-

naries. Then, we ran the Binary Border Discovery module against the firmware sample

using different values for kn and kc (ranging from 1 and 10). For kn ≥ 5 and kc ≥ 1 we

correctly identified the three binaries as border binaries. Therefore, we set kn and kc to

5 and 1 respectively.

Next, we measured the effectiveness of the Border Binaries Discovery module to

identify network parsers. We randomly picked 10 firmware samples, investigated their

network-facing binaries and randomly selected 150 more binaries. Then, we ran the

108

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

Border Binaries Discovery module against all of these binaries three times: (i) consid-

ering only the features described in [24], (ii) considering also the #net feature, and,

(iii) considering also the #conn feature. In the first case (i), this module identified 50

binaries containing parsers. However, after manual investigation, we concluded that

only 16 of them handled data received from the network. In the second case (ii), our

tool identified 51 binaries, and we found that 26 of them contained network parsers that

are affected by user input. Finally, in the third experiment (iii), this module identified

50 binaries, and we verified that 26 of them contained network parsers affected by user

input. One of the 51 binaries identified during experiment two (ii) was not detected as a

network parser in experiment three (iii). We found that, indeed, it does not implement

any network functionality. Finally, we found that our Border Binaries Discovery mod-

ule’s algorithm missed a real network parser. This false negative was due to the fact

that angr failed to identify any strings, as the binary retrieved them by computing their

addresses at runtime as offsets from the Global Offset Table (GOT), thus affecting the

binary parsing score.

3.19.3 Binary Dependency Graph

We manually checked the soundness and completeness of the recovered BDGs. In

all of the 53 cases, to the best of our knowledge, the BDGs were sound: every edge

in the BDG corresponded to an existing data dependency between the involved bina-

109

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

ries. Then, we checked if any edge was missing. Out of 53 BDGs, we found that, for

the three Tenda firmware samples, the BDG algorithm failed to connect an edge be-

tween two binaries, as a valid network-facing binary was missing (as explained in Sec-

tion 3.19.2). However, our Semantic CPF correctly identified the binaries receiving

data from the missing network-facing binary as getters. Furthermore, the BDG of 14

TP-Link firmware samples did not contain any edges, as angr failed to resolve several

data attributes referenced within these firmware samples during the Border Binaries

Discovery phase. We discovered that these firmware samples ran on a MIPS architec-

ture, which is unfortunately poorly supported by angr.

We manually investigated all the matching CPFs, and we found that the Semantic

and the Environment CPFes matched 11 and 32 times respectively, whereas the remain-

ing CPFes did not identify any active IPC communication. After manual investigation,

we concluded that these results were indeed correct.

3.19.4 Insecure Interactions Detection

Each alert produced by our prototype consists of an insecure data flow (e.g., a flow

reaching an unsafe memcpy-like function), and we distinguish true positives from false

positives according to the type of data reaching the sinks of the data flows. If the data is

provided by the user (e.g., HTTP headers), we consider the alert a true positive bug (if

the bug can be exploited, it is denoted as a security vulnerability). On the other hand,

110

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

if the data is not user-provided (e.g., the data is represented by filesystem file names),

we consider the alert a false positive.

Our prototype produced 87 alerts, among which 51 were true positives (34 multi-

binary bugs and 17 single-binary bugs), for a total of 8,565 considered binaries (Ta-

ble 3.1). We manually verified each alert by reverse-engineering the involved binaries

and inspecting the highlighted data flows. We reported all our findings to the appropri-

ate manufacturers (responsible disclosure).

We also verified how many of these 51 bugs were security vulnerabilities. We

acquired two of the devices and successfully crafted PoCs for three of the vulnerabili-

ties, and obtained one CVE and one PSV5. Two other alerts were non-exploitable bugs:

though user data reached a sensible program point, we were not able to achieve control-

flow redirection. Five more vulnerabilities were confirmed by my work on bootloaders

(see Chapter 2). For the remaining vulnerabilities, we relied on manufacturers’ collabo-

ration, since we could not obtain all of the devices for the firmware in our dataset with-

out incurring in excessive expenses, and confirmed nine more vulnerabilities. Sadly,

some of the manufacturers were uncooperative and refused to consider reports without

a proof-of-crash (PoC) on the physical device. Therefore, we assessed the remain-

ing vulnerabilities by reverse engineering the firmware. By using vendor-confirmed

vulnerabilities and checking whether other firmware using the same codebase (infor-

5CVE-2017-14948, PSV-2017-3121

111

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

mation gathered from vendors) had similar bugs, we were able to confirm another 20.

The remaining 12 were statically investigated for exploitability, and we believe that all

of them are exploitable. Overall, we verified every alert, and 46 of the detected bugs,

to the best of our knowledge, were not publicly known before KARONTE. The 12 con-

firmed vulnerabilities are being fixed as well as those bugs affecting samples sharing

similar codebases (at least an additional 20).

To evaluate the false negative rate of our prototype, we searched for CVEs involv-

ing our dataset, and collected information for 30 different bugs. Since 21 of these bugs

belonged to the binary that angr failed to analyze (Section 3.19.2), we manually added

this binary to the BDG and annotate the functions referencing network-encoding key-

words, and re-ran our analysis. KARONTE re-discovered all of these bugs. Overall, our

prototype generated two false negatives belonging to the Nvidia and Huawei firmware,

respectively. In these cases, we failed to introduce the initial taint, as angr failed to

resolve two indirect control-flow transfers.

3.19.5 Comparative Evaluation

To evaluate the importance of every step of KARONTE, we compared the effort

required by an analyst to verify the results generated by different approaches. To do

this, we considered the 49 firmware samples containing multiple binaries, and selected

those 29 samples whose architecture is fully supported by angr.

112

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

Border BDG Analysis Total
0

10

20

30
Ti

m
e

(h
ou

rs
)

0 50 100
No. Paths (×104)

0

25

50

75

100

Ti
m

e
(h

ou
rs

)

(a) (b)

0 500 1000 1500
No. Binaries

0

25

50

75

100

Ti
m

e
(h

ou
rs

)

0 20 40 60 80
No. Basic Blocks (×105)

0

25

50

75

100
Ti

m
e

(h
ou

rs
)

(c) (d)

Figure 3.8: (a) Average and standard deviation of the execution time of each step of KARONTE.
Analysis time includes BFG Recovery and Insecure Interaction Detection. (b) Dependency between
execution time and the number of explored paths. (c) Dependency between execution time and the
number of binaries in the firmware samples. (d) Dependency between execution time and the number of
basic blocks in the firmware samples. The dashed lines represent the linear regressions.

We then compared four different approaches. First, we performed a static single-

binary bug search using our static taint engine on every binary contained in each firmware

sample (dataset ALL). Second, we ran our static taint engine on the border binaries of

the firmware sample (dataset PARSERS). Third, we run the BDG algorithm on each

firmware sample, and we applied our static taint engine to the binaries that handle

user-provided data without propagating the data constraints (dataset BDG). Finally, we

113

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

considered our full approach (dataset KARONTE). During this evaluation, we made the

realistic assumption that without propagating user input from network-facing binaries,

the security analyst has no prior knowledge of where, or if, the user input is introduced

in a given binary. Therefore, we considered every IPC channel as a possible source of

input.

As clearly shown by our results depicted in Table 3.2, the number of generated

alerts decreased to a manageable number (i.e., 20,931 to 74) only when applying the

full KARONTE approach. We manually investigated 50 randomly picked alerts se-

lected from those generated by the single-binary analysis experiments, which were

effectively filtered out by the full KARONTE approach. All of them were false posi-

tives. In fact, in all of these cases, the binaries causing the alerts were spawned (e.g.,

through the system function call) only using hard-coded arguments and parameters,

thus not being affected by the user input. On average, KARONTE uncovered 2 vulnera-

bilities per sample not discovered when only network-facing binaries were considered

(PARSERS), which highlights the importance of considering all the binaries handling

attacker-controlled data.

Throughout our experiment, our expert program analyst averaged 7 minutes per in-

vestigation of alert. Based on this, we estimate that the investigation of alerts stemming

from a single-binary analysis of a NETGEAR firmware sample, for instance, would

require approximately 138 hours. KARONTE decreases this time to 14 minutes.

114

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

5 10 15
BDG Size

0

100

200

300
No

. F
w

Sa
m

pl
es

1025 1055 1085 10115 10145

No. Paths (log)

0

50

100

150

200

250

No
. F

w
Sa

m
pl

es

(a) (b)

Figure 3.9: (a) Distribution of the sizes of the BDGs of our firmware samples. (b) Distribution (in
log scale) of the estimated total number of paths in an average binary in the BDG. For graphical reasons,
this figure shows 95% of our data.

3.19.6 Large-scale Scalability Assessment

We assessed KARONTE’s performance and scalability by analyzing 899 firmware

samples from Firmadyne dataset (all samples using architectures supported by KARONTE).

We ran this evaluation on a cluster of machines equipped with Intel Xeon E5 CPU, 16

to 32 GB of RAM, and running Ubuntu 18.04.

Firmware Complexity. We investigated the complexity of the firmware samples in our

dataset using three metrics: number of binaries, number of basic blocks, and number of

paths present in the binaries handling user input (i.e., those in the BDG). In particular,

we leveraged Bang et al.’s work [9] to calculate an upper bound on the number of paths

of a program. To do this, Bang’s approach requires us to retrieve the program’s longest

path, which is an NP-hard problem [121]. To overcome this issue, we approximated the

longest path of a binary by performing a symbolic exploration for 10 minutes (while

115

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
No. Triggered Timeouts

0

50

100

No
. F

w
Sa

m
pl

es
w/ path prioritization
w/o path prioritization

Figure 3.10: Distribution of the number of timeouts triggered during the symbolic exploration with
and without our path prioritization.

limiting the maximum number of iterations of a loop to five), and recording the longest

visited path.

Table 3.3 shows that, on average, a firmware sample contains around 157 binaries,

for a total of 7.85 ∗ 105 basic blocks. Furthermore, 82% of the binaries in the BDGs

contain less than 1025 paths, as shown in Figure 3.9.b. Interestingly, our dataset includes

some far more complex firmware samples. Around 2% of them contain more than 1000

binaries (for a total of more than 7.15∗106 basic blocks), and those handling user input

can reach a number of paths on the order of 10306.

Overall, our dataset is composed of a collection of firmware samples with a wide

range of complexity, thus making it suitable for studying the performance of our tool.

BDG. We investigated the BDGs of our dataset, and found that 38.7% of the firmware

samples implement network-related services through the use of multiple binaries (#Multi-

Binary column in Table 3.3). Their BDGs contain, on average, 5 binaries, among which

116

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

3 are border binaries. Most of BDGs are comprised of 5 or 6 binaries, though some

samples have BDGs composed of more than 10 binaries, and one BDG contains 16

binaries (Figure 3.9.a). For 6 vendors our tool did not identify any firmware sample

sharing user data among multiple binaries. We randomly picked 5 of these 18 firmware

samples for manual investigation. In three cases, the network functionality was indeed

performed by single binaries, not communicating with each other. In two cases, the

Border Binary Discovery phase failed to find one border binary, as we could not stati-

cally resolve its strings (Section 3.19.2). However, the firmware samples were relying

on a single program to implement the network functionality of the device.

On average, a BDG connected subgraph contains 4 nodes (i.e., four binaries com-

municating), and has a depth of 1 (i.e., a binary shares data with other 3 binaries).

However, our dataset presented more complex cases. For instance, the BDG composed

of 16 different binaries had 4 different connected subgraphs, and the biggest subgraph

had a depth of 2 and contained 7 binaries. In this case, we found that a border binary

exchanged data with 6 other binaries, and one of them modified the data and shared it

further. Finally, there were a few cases where both the cardinality of a BDG connected

subgraph and its depth were 1 (e.g., Belkin). In these cases, we found that a border

binary was using IPC to exchange data with itself.

117

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

Overall, the results are in line with those discussed in Section 3.19.3, and show that

firmware samples are made of highly interconnected components, whose interactions

can be fairly complex, highlighting the importance of approaches like KARONTE.

Performance. We measured the time required by each phase of KARONTE, and the

total analysis time. Our prototype fully analyzed 80% of the firmware samples within

a day, and, on average, it completed each phase within 8 hours (Figure 3.8.a).

As we can see, the Border Binaries Discovery and BDG Recovery phases presented

a great variance. We discovered that the time increase in the Border Binary Discovery

phase was caused by the Z3 theorem solver, which sometimes required several minutes

to solve a single symbolic expression and is heavily utilized by angr (some CFGs took 8

hours to be built). Time increases in the Binary Dependency Graph phase were also due

to slow z3 solves, and, in a few cases, to an unusually high number of data keys. The

time spent to build a BDG depends on the number of analyzed paths, which, in turn,

depends on the number of data keys found in a binary. Some border binaries (around

7%) contain more than 50 data keys, which we analyzed to detect whether the binary is

a setter or a getter. Since we perform each of these analyses up to a certain time limit

(10 minutes in our experiments), the BDG phase might take several hours to analyze a

single binary (around 8 hours for 50 data keys).

Figure 3.8.b depicts how the number of analyzed paths influences the total analysis

time. Most samples that took longer to be fully analyzed are those for which we ex-

118

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

plored a small number of paths. These samples are those that caused angr to take a long

time to generate the CFGs.

Finally, we found that the number of binaries and their size (in terms of the number

of basic blocks) in a firmware sample do not significantly impact on the performance

of our tool. In fact, 67% of the firmware samples that we analyzed for more than a

day contained a number of binaries less than or equal to 27 (for a total number of basic

blocks less than or equal to 7.64 ∗ 105), whereas far more complex firmware samples

were analyzed faster, as shown in Figure 3.8.c and Figure 3.8.d.

Overall, KARONTE scales well with the firmware complexity, in terms of the num-

ber of binaries, basic blocks, and paths.

Symbolic Exploration. We studied the impact of our path prioritization strategy and

untaint policies on our results. First, we ran our prototype on the KARONTE dataset

with and without the path prioritization strategy and compared the number of times

that a timeout (set to 10 minutes) triggered during the analysis (note that no timeout

means all paths carrying tainted data have been exhausted). Figure 3.10 depicts the

distribution of the number of timeouts triggered during the analysis of the samples

in our dataset. Indeed, the number of firmware samples fully analyzed without any

timeout is higher when the path prioritization is enabled. Specifically, considering the

total number of times we ran our taint engine, we explored every tainted path 84% of

the times when the path prioritization was enabled, and 75% of the times when it was

119

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

disabled. This corresponded to around 2 ∗ 106 paths being pruned away. On average,

KARONTE explored around 15 ∗ 103 paths per firmware sample (Table 3.3). Though

the average number of estimated paths is significantly higher, it is important to remind

that KARONTE aims to find and analyze only those paths affected by user input.

Then, we ran our tool with and without untaint policies and compared the number

of generated alerts. Overall, the number of alerts generated when the untaint policies

were applied decreased by 2.5%. We manually inspected all of them and found them

to be, indeed, false positives. In these cases, a buffer was safely copied using unsafe

functions (e.g., using strcpy after checking their size through strlen).

Alerts & Vulnerabilities. On average, KARONTE generated 2 alerts per sample, for

a total of 1,037 alerts. We sampled 100 alerts for inspection and found 44 to be true

positive (i.e., user-provided data reached a sink), and 30 of them to be multi-binary

vulnerabilities. This means that, in almost one case out of two, KARONTE is able

to detect critical data flows that require immediate attention, and that often involve

multiple binaries. We reported our findings to the respective vendors.

Firmadyne raised zero alerts for the large-scale dataset. Though we cannot be cer-

tain about why Firmadyne did not find bugs, we speculate that this emphasizes one

of the advantages of a static approach over a dynamic one: though KARONTE makes

certain trade-offs, it analyzes complex firmware without emulating it or tackling the

dynamic coverage problem.

120

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

3.19.7 Verifiability

To promote reproducible research, we asked an independent researcher from North-

eastern University to replicate our results shown in Table 3.1 (excluding the columns

bugs and vulnerabilities, as they would have needed to contact the manufacturers, but

including generated alerts). The large-scale evaluation and Table 3.2 were not repli-

cated, due to the prohibitive cost of the required computational power.

Also, we created a Docker container with our tool and running environment (e.g.,

KARONTE’s dataset). Along with this container, we provided the researcher with the

source code of our tool, a copy of this paper, the necessary documentation explaining

the purpose of each component in our tool, and our expected results. Finally, we in-

structed them on how to run our tool. The independent researcher was successfully able

to obtain all of the results presented in Table 3.1.

121

Chapter 3. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded
Firmware

Table 3.3: Dataset for large-scale evaluation. In order: vendor’s name, number of firmware samples,
number of firmware samples whose network services are handled by multiple binaries (percentage),
number of binaries in the firmware samples, number of border binaries, number of binaries in the BDG,
cardinality of a subgraph in the BDG, maximum depth of a subgraph in the BDG, number of basic blocks
in the firmware sample, number of paths in binaries handling user input, execution time, and generated
alerts.

Vendor # Firmware # Multi # # Border BDG Subgraph Subgraph # Basic # Explored Time† #

Samples Binary (%) Binaries† Binaries† Size† Cadinality‡ Depth‡ Blocks† Paths† Paths [hh:mm:ss]† Alerts†

Airlink101 1 1 (100.0%) 94 5 8 4 1 9× 1004 1× 1005 68.58K 3:55:44 13

Belkin 6 1 (16.7%) 184 5 5 1 1 2× 1005 3× 1081 4.12K 0:49:46 1

Buffalo 3 0 (0.0%) 301 5 5 0 0 2× 1006 3× 1014 43.00 0:17:01 0

Cisco 21 6 (28.6%) 142 5 5 3 1 4× 1005 2× 1022 173.27K 5:36:15 4

D-Link 306 196 (64.1%) 103 3 3 1 1 7× 1005 3× 1030 41.64K 21:51:27 1

Foscam 5 5 (100.0%) 115 5 6 4 2 4× 1005 5× 1015 52.20K 18:01:00 7

Inmarsat 2 0 (0.0%) 640 5 5 0 0 2× 1006 9× 1003 3.10K 11:05:06 0

Linksys 12 1 (8.3%) 404 5 6 11 1 8× 1005 2× 10305 23.20K 3:32:36 1

NETGEAR 304 52 (17.1%) 115 5 5 3 1 5× 1005 4× 10107 82.83K 3:54:00 1

OpenWrt 12 1 (8.3%) 14 1 1 4 2 3× 1004 4× 1015 24.41K 1:06:16 0

Polycom 7 0 (0.0%) 130 4 4 0 0 1× 1006 2× 1012 1.01M 31:49:22 8

Supermicro 26 3 (11.5%) 209 5 5 2 1 4× 1005 2× 10148 12.16K 1:54:03 5

Synology 44 28 (63.6%) 679 3 3 1 1 5× 1006 1× 1014 4.55K 33:12:01 1

TP-Link 3 0 (0.0%) 200 5 5 0 0 7× 1005 1× 1012 2.00K 2:53:15 1

TRENDnet 55 26 (47.3%) 156 3 4 2 1 6× 1005 2× 10118 14.52K 22:59:12 1

Tenda 4 1 (25.0%) 332 5 5 1 1 6× 1005 2× 1013 13.04K 5:39:25 1

Tomato 51 11 (21.6%) 223 5 5 4 1 7× 1005 1× 1026 90.36K 9:40:55 6

Ubiquiti 15 7 (46.7%) 68 3 4 1 1 1× 1005 3× 1008 11.61K 3:06:21 2

Verizon 1 0 (0.0%) 10 5 5 0 0 1× 1005 5× 1020 2.49K 0:19:02 1

Zyxel 19 9 (47.4%) 153 5 6 3 1 3× 1005 4× 1016 260.87K 4:46:38 3

forceWare 2 0 (0.0%) 173 5 5 0 0 2× 1005 2× 1003 3.00 0:30:18 0

Total 899 348 (38.7%) 140.82K 3.60K - - - 16.43M - 60.68M 11830:28:37 1.03K

†: Averages considering all of the vendor’s firmware samples.

‡: Averages considering the firmware samples whose network services are handled by multiple binaries

(multi-binary samples).

122

Chapter 4

BINTRIMMER: Towards Static Binary
Debloating Through Abstract
Interpretation

In the previous Chapters, we studied how to find bugs in the different components of

a firmware image. In this Chapter, we study how to improve the security of a program

by safely reducing the attack surface that an attacker could use to harm users. This

process is also known as program debloating. Note that, in this work, we assume that

the source code of the target program is not available, as often happens with firmware

for IoT devices.

Oftentimes, software developers rely on ready-to-use third-party libraries to imple-

ment complex software functionality (e.g., hardware abstraction layers to interact with

a system-on-a-chip). However, these libraries might contain code that is not necessary

(and therefore not referenced) by the main application, which makes the final program

bloated with unused code. Other than making a program unnecessarily big, unused

123

Chapter 4. BINTRIMMER: Towards Static Binary Debloating Through Abstract Inter-
pretation

code is potentially dangerous as it increases the surface (i.e., the amount of code) an

attacker can use to exploit the application (e.g., using ROP chains), and perform, for

instance, control-flow hijack attacks. The process of decreasing the attack surface of a

program by inhibiting the execution of its dead code is called program debloating.

In this Chapter, I propose a novel abstract domain, called Signedness-Agnostic

Strided Interval, which we use as the cornerstone to design a novel and sound static

technique, based on abstract interpretation, to reliably perform program debloating.

Throughout this Chapter, I detail the specifics of our approach and show its effective-

ness and usefulness by implementing it in a tool, called BINTRIMMER, to perform static

program debloating on binaries. Our evaluation shows that BINTRIMMER can remove

up to 65.6% of a library’s code and that our domain is, on average, 98% more precise

than the related work.

4.1 Background and Motivation

Value range analysis [117] is a particular type of data-flow analysis that tracks the

range of values that a numeric entity (e.g., a program variable) might assume at any

point of a program’s execution. These analyses are built on top of abstract domains [29,

30, 48], and can be utilized to guide the recovery of a program’s CFG by: (i) helping

124

Chapter 4. BINTRIMMER: Towards Static Binary Debloating Through Abstract Inter-
pretation

1 void main() {
2 uint8_t opt;
3 void (*f_ptr)(void) = [foo, bar, baz]; // foo, bar, and baz are
4 // defined in another module
5 scanf("%"SCNu8, &opt);
6 opt = (opt * 2) + 1;
7 // ...
8 if (opt == 0) {
9 f_ptr[0](); // call to foo

10 } else if(op == 100){
11 f_ptr[1](); // call to bar
12 } else if (opt > 127) {
13 f_ptr[2](); // cal to baz
14 }
15 }

Figure 4.1: Precisely determining variable values is crucial to recover the ideal CFG.

to determine control dependencies between programs statements, and (ii) resolving the

targets of indirect control-flow transfers.

Consider for instance Code 4.1. A sound and precise value range analysis would

determine that: (i) The variable opt can only assume odd values, and (ii) the function

pointer f ptr can point to the functions foo, bar, and baz. A CFG recovery algo-

rithm employing this range analysis would leverage these two pieces of information to

retrieve a complete and sound CFG. Precisely, the algorithm would determine that the

if conditions at Line 8 and Line 10 are never satisfied, and, therefore, that the functions

foo and bar are dead code and they should not appear in the program’s CFG.

To recover a complete and (possibly) sound CFG, the CFG recovery algorithm

should rely on a sound and precise range analysis. To produce sound results, range

analyses must be able to reason about the signedness of program variables. Consid-

ering the example in Code 4.1, if a given range analysis as assumes incorrectly that

the variable opt is signed, it would determine that opt cannot assume values higher

125

Chapter 4. BINTRIMMER: Towards Static Binary Debloating Through Abstract Inter-
pretation

than 127, and, therefore, the if condition at Line 12 would be considered unsatisfied

under any execution of the program. While the source code of programs written with

strong-typed languages (e.g., C/C++) explicitly state a variable signedness, determin-

ing such information in binaries is a hard problem [17, 79]. In these cases, the solution

is to consider each variable as both signed and unsigned, that is, to make the domain

of each variable in a program signedness-agnostic. The first step in this direction has

been taken by Navas et al. [89], who proposed an abstract domain called Wrapped In-

tervals (WI), which represents both signed and unsigned numeric values. Albeit sound,

Wrapped Intervals produce too imprecise results to be applicable in practice. In fact,

in this domain, a variable can assume any of the values within a range, whereas, in

practice, only some of the values might be assumed during any execution of the pro-

gram. This imprecision might impact the soundness of a CFG. Consider Code 4.1, and

assume that the range analysis employed by the CFG recovery algorithm determines

that the variable opt can assume every value between 1 and 255. In this case, the CFG

recovery algorithm would mistakenly establish that the if condition at Line 10 can

be satisfied, and, therefore, that the function bar should be included in the program’s

CFG.

In this work, we restore this loss of precision, while maintaining signedness agnosti-

cism, by designing a domain based on the fundamental concepts of Wrapped Intervals,

but supporting a stride. We call this domain Signedness-Agnostic Strided Interval. The

126

Chapter 4. BINTRIMMER: Towards Static Binary Debloating Through Abstract Inter-
pretation

use of a stride allows us to precisely determine the values that a program variable can

assume (e.g., odd values for opt in Code 4.1), thus improving the precision of a pro-

gram CFG.

Our domain is particularly suited for binary analysis. In fact, there are several high-

level code constructs (e.g., switch-case statements) that are translated in binary

code in a way (e.g., through jump tables) that Wrapped Intervals would not handle

well. In these cases, the use of a stride would significantly improve the precision of the

overall analysis (e.g., by precisely enumerating the destinations of a jump table).

4.2 Overview

Our approach to soundly perform code debloating of a program P is based on the

recovery of a complete and precise CFG for P . Given a program P to debloat, if the

CFG G for P is complete, every basic block not present in G can be safely removed

from P without hindering its correctness. However, the more G is precise, the more

basic blocks can be safely removed from P . In fact, if G is also sound all the useless

basic blocks would be removed from P . To achieve this goal, we designed a new

technique called Iterative CFG Refinement.

127

Chapter 4. BINTRIMMER: Towards Static Binary Debloating Through Abstract Inter-
pretation

Figure 4.2: Iterative CFG Refinement Algorithm. Figure 4.3: Signed-Agnostic Strided Interval.

4.2.1 Iterative CFG Refinement

Given a function f (e.g., the address of a program’s entry point), the Iterative CFG

Refinement procedure iteratively builds f ’s CFG and leverages a sound algorithm based

on value-range analysis to refine it.

The Iterative CFG Refinement algorithm relies on the availability of a procedure

PCFG to recover the CFG of the function f . We assume that PCFG can recover all

the basic blocks and code boundaries within f . We do not make any further assump-

tions about the precision of PCFG. For example, PCFG could be simply defined as a

procedure that creates edges among all the possible basic blocks of f . The iterative

CFG refinement algorithm is depicted in Figure 4.2, and can be divided into three main

components, which we explain in the remaining of this Section.

128

Chapter 4. BINTRIMMER: Towards Static Binary Debloating Through Abstract Inter-
pretation

CFG and VSA. First, we use PCFG to compute f ’s CFG, and add f to a function set

(initially empty). Then, we perform a Value-Set Analysis [8] (or VSA) on each function

in the function set. The VSA is a static analysis based on abstract interpretation [29]

that determines a conservative approximation of the set of numeric values and addresses

that variables assume at each program point within a function f . The VSA utilizes

our abstract domain SASI (detailed in Section 4.3) to analyze f and retrieve precise

information about the binary variables (i.e., registers and memory locations).

Checker. The Checker module utilizes the VSA results to augment and refine the

CFG through two different sub-modules: the Branch Annotator, and the Target Solver.

The Branch Annotator retrieves each CFG’s conditional edge ec (i.e., guarded by

an if-then-else condition), and analyzes the logical expression of the condition that

determines whether ec would be taken or not at runtime. To this end, it relies on the

abstract operations defined on SASI (shown in Section 4.5) to evaluate the theoretical

satisfiability of the expression. If no solution exists, the Branch Annotator annotates ec

and marks it for removal.

On the other hand, the Target Solver considers f ’s basic blocks and collects those

having indirect control-flow transfers (e.g., due to an indirect call). It then uses the VSA

information to gather the set of function targets to which each indirect flow transfer can

resolve, and add them to a set Ft. These functions are used to recover a new augmented

CFG and to bootstrap a new round of VSA.

129

Chapter 4. BINTRIMMER: Towards Static Binary Debloating Through Abstract Inter-
pretation

When a fixed-point is reached, that is when no new flow transitions are discovered

(i.e., Ft = 0) and no new edge is annotated, the current CFG (i.e., CFGi) is passed to

the Filter module.

Filter. The Filter module scans every edge in CFGi and removes each annotated

edge. Then, for each basic block b in CFGi, it checks whether it exists an inbound

edge for b. If not, it retrieves all the nodes dominated (as defined in graph theory [137])

by b and removes them from CFGi. Finally, it returns the filtered CFGp.

4.2.2 Program Debloating

From a security point of view, the problem of program debloating is formulated as

decreasing the attack surface of a program by removing its dead code. This goal can

be achieved with two different techniques: (i) deleting the dead code from the binary,

(ii) rewriting the dead code with useless instructions (e.g., hlt).

Though both approaches effectively remove the potentially dangerous dead code

from a program, the former presents more challenges. In fact, if the code of a binary

is modified, potentially all of its code and data pointers must be updated to reflect the

new program layout. In literature, two main approaches are proposed to achieve this

goal: Binary Instrumentation and Binary Rewriting. In the former approach, a binary

file is usually augmented with pieces of trampoline code that fix the program pointers at

runtime [15,53,91,147]. In the latter approach, Binary Rewriting techniques [127,128]

130

Chapter 4. BINTRIMMER: Towards Static Binary Debloating Through Abstract Inter-
pretation

attempt to achieve perfect disassembling (i.e., by solving code and data pointers), thus

being able to recompile a program. Unfortunately, any of the techniques mentioned

above present several limitations and trade-offs (e.g., ignoring computed code pointers)

that hinder their soundness.

For this reason, to preserve the soundness of our approach, we decided to eliminate

the dead code of a program by rewriting it. This approach, though not decreasing the

size of a program itself, presents mainly two advantages: (i) the program does not need

any external support to be executed (e.g., a modified dynamic loader to perform runtime

address resolution) and (ii) soundness is preserved. Note, however, that our approach

can be easily extended to use one of the state-of-the-art solutions of binary rewriting,

such as Ramblr [127], to effectively delete the dead code.

4.3 Signedness-Agnostic Strided Intervals

In this Section, we present a novel approach to the abstract modeling of numeric en-

tities with a fixed width. We define a new abstract domain named Signedness-Agnostic

Strided Interval to represent the set of values that a numeric entity (of a given bit-width)

can possibly assume.

131

Chapter 4. BINTRIMMER: Towards Static Binary Debloating Through Abstract Inter-
pretation

4.3.1 Definition

A Signed-Agnostic Strided Interval (or SASI) is indicated as r = sr[lb, ub]w, where

lb and ub are bit-vectors of w bits (called lower bound and upper bound respectively),

whereas sr (called stride), is a non-negative integer.

A SASI r represents the set of values: {lb, lb+w sr, lb+w 2∗sr, ..., ub}, where +w

represents modular addition of bit-width w (i.e x+w y = (x+ y) mod 2w). Formally,

r = {(lb+ k ∗ sr) mod 2w ≤ ub, k ∈ N} (4.1)

For example, 2[1010, 0010]4 represents the set of values {1010, 1100,

1110, 0000, 0010}. Note that, the SASI 0[lb, lb]w represents the singleton lb.

A SASI variable can be graphically represented through a number circle, as depicted

in Figure 4.3. The set of numerical values represented by a SASI are determined by

traversing the number circle clockwise starting from the lower bound lb up to the upper

bound ub with increments of the stride value sr. SASI can represent unsigned and

signed variables alike.

For example, consider the SASI r = 1[0100, 1010]4 representing a variable x (i.e.,

x ∈ r). r represents the values 4 ≤ x ≤ 10 if x is interpreted as an unsigned variable,

or the values (4 ≤ x ≤ 7) ∨ (−8 ≤ x ≤ −6) if interpreted as signed. In the case

of signed values, the South Pole and the North Pole divide the positive and negative

numbers: Positive numbers begin from the left of South Pole, proceeding clockwise up

132

Chapter 4. BINTRIMMER: Towards Static Binary Debloating Through Abstract Inter-
pretation

to the left of North Pole. Similarly, negative values begin from the right of the North

Pole, proceeding clockwise down to the right of South Pole. Note that, operations on

SASI (Section 4.5) do not assume the signedness of variables, thus providing sound

results for both signed and unsigned interpretations.

Throughout this work we use the following notation: Bw and Ww indicate the set

of all the possible bit-vectors representable on w bits, and the set of all the possible

SASIs representable on the same number of bits, respectively. A modular operation on

w bits is indicated as opw (e.g., +w), where x opw y = (x op y) mod 2w. We use the

sequence representation bk to express a k-long sequence of the bit b (b ∈ {0, 1}), and the

symbol || to indicate sequence concatenation. Furthermore, the symbol ≤ represents

the lexicographic ordering in Bw, whereas ≤x represents the relative ordering, with

respect to the value x, on the number circle (Figure 4.3). That is to say:

a ≤x b iff (a−w x) ≤ (b−w x) (4.2)

Informally, starting from x and proceeding clockwise on a number circle, a is encoun-

tered before b.

Using the above notations, we now define several functions as needed for any static

analysis based on abstract interpretation.

133

Chapter 4. BINTRIMMER: Towards Static Binary Debloating Through Abstract Inter-
pretation

Definition 1. Concretization Function. Given a SASI r = sr[lb, ub]w, the concretiza-

tion function γ : Ww → P (Bw) is defined as follows:

γ(⊥) = ∅

γ(r) = {lb, lb+w sr, lb+w 2 ∗ sr, ..., ub}

γ(>) = Bw

(4.3)

Where P (Bw) is the power set of Bw, ⊥ denotes an empty SASI (i.e., 0[,]w) and >

denotes the full SASI (i.e., 1[0w, 1w]w).

Definition 2. Abstraction Function. Given a set of values V = {v1, v2, ..., vn}, the

abstraction function α : P (Bw)→ Ww is defined as follows:

α(∅) = ⊥

α(V) = sr[a1, an]w, (aj)
n
j=1 = sort(v1, v2, ..., vn)

α(Bw) = >

(4.4)

where sr = gcd(d1, d2, ..., dn−1) and dj = aj+1−w aj, for 1 ≤ j ≤ (n− 1). gcd is the

greatest common divisor function, and sort is a function sorting values in ascending

order.

Intuitively, given a set of bit-vectors, the abstraction function sorts its elements in

ascending order, thus creating the sequence (aj)
n
j=1. Then, it considers the first and

last elements as the lower and upper bounds respectively, and, starting from the lower

bound, it selects the greatest stride sr that includes all the elements in (aj)
n
j=1 .

134

Chapter 4. BINTRIMMER: Towards Static Binary Debloating Through Abstract Inter-
pretation

Definition 3. Membership Function. Given a bit-vector v and a SASI r = sr[lb, ub]w,

the membership function ∈ is defined as follows:

v ∈ r =


true if r = >

false if r = ⊥

v ≤lb ub ∧ (v −w lb)mod sr = 0 if r = sr[lb, ub]w

(4.5)

Definition 4. Cardinality Function. Given a SASI r = sr[lb, ub]w the cardinality

function # is defined as:

#(⊥) = 0

#(>) = 2w

#(r) =

⌊
ub− lb+ 1

sr

⌋
Definition 5. Ordering Operator. Given two SASIs r = sr[a, b]w and t = st[c, d]w, the

ordering operator v is defined as follows:

r v t =



False if r = > ∧ t 6= >

True if r = ⊥ ∨ t = > ∨

((a = c) ∧ (b = d) ∧

(sr mod st = 0))

a ∈ t ∧ b ∈ t ∧ (c 6∈ r ∨ d 6∈ r) otherwise

∧(a− c) mod st = 0 ∧ sr mod st = 0

(4.6)

In other words, one SASI is considered to be included in another if every value in

the former is contained in the latter, that is γ(r) ⊆ γ(t).

135

Chapter 4. BINTRIMMER: Towards Static Binary Debloating Through Abstract Inter-
pretation

Figure 4.4: Possible relative positions of two SASIs r = sr[a, b]w and t = st[c, d]w.

Note that, the inclusion property holds if we replace the stride of a SASI by one of

its divisors. i.e

r′ = sr′ [a, b]w ∧ (sr mod sr′ = 0))→ r v r′ (4.7)

Furthermore, while (v, Ww) forms a partially ordered set (with least element ⊥

and greatest element >), it does not form a lattice as the ordering does not always

provide a unique least upper bound (or join) and greatest lower bound (or meet). For

example, consider the two SASIs 2[0010, 0100]4 and 2[1000, 1110]4. Two minimum

upper-bounds (i.e., having the same cardinality) for these SASIs are 2[0010, 1110]4

and 2[1000, 0100]4. However, they are incomparable, thus violating the unique least

upper bound requirement. Since a join and meet are not available, we must define a

deterministic pseudo-join and a pseudo-meet.

Pseudo-Join and Generalized Join operators. The relative position of two SASIs (viz

136

Chapter 4. BINTRIMMER: Towards Static Binary Debloating Through Abstract Inter-
pretation

r = sr[a, b]w and t = st[c, d]w) can be one of the four possibilities shown in Figure 4.4.

With this in mind, we define the pseudo-join operator between two SASIs as follows:

Definition 6. Pseudo-Join Operator. Given two SASI r = sr[a, b]w and t = st[c, d]w,

the pseudo-join operator
∼
t is defined as follows:

r
∼
t t =



t if r v t

r if t v r

> if a ∈ t ∧ b ∈ t ∧ c ∈ r ∧ d ∈ r

sad[a, d]w if c ∈ r ∧ b ∈ t ∧ a 6∈ t ∧ d 6∈ r

scb[c, b]w if a ∈ t ∧ d ∈ r ∧ c 6∈ r ∧ b 6∈ t

sad[a, d]w if a 6∈ t ∧ d 6∈ r ∧ c 6∈ r ∧ b 6∈ t ∧

#(sad[a, d]w) ≤ #(scb[c, b]w)

scb[c, b]w otherwise

(4.8)

Where sxy = gcd(sr, st, y −w x), with xy ∈ {(a, d), (c, b)} and gcd is the great

common divisor function.

The pseudo-join operator we defined assures that the SASI with the lowest cardi-

nality, and, thus, most precise, is always picked. However, it is not associative, that is

((r
∼
t t)

∼
t z) 6= (r

∼
t (t

∼
t z)). Therefore, we define a generalized pseudo-join operator

(
∼⊔

). Given a set of n SASIs, this operator has to produce the SASI z with the least

cardinality possible, and such that the n SASIs are included in z. Theoretically, there

are n! possible join to consider to pick z. However, as SASIs are traversed clockwise

on the number circle, only n of these should be considered. The results of the other

137

Chapter 4. BINTRIMMER: Towards Static Binary Debloating Through Abstract Inter-
pretation

Algorithm 2 Generalized Join.

1: procedure
∼⊔

(X)
2: (yj)

n
j=1 ← sort by lowerbound(X)

3: z ← ⊥
4: for i in (1 ... n) do
5: zi ← reduce(lambda x, y:

∼
t(x, y), (yj)

n
j=i || (yj)

(i−1)
j=1)

6: if z = ⊥ or (#(zi) < #(z)) then
7: z ← zi
8: end if
9: end for

10: return z
11: end procedure

n!− n joins are included in one of these n joins. The generalized pseudo-join operator

is defined in Algorithm 2, and works as follows: Given a set X of n SASIs, it sorts X

elements according to the lexicographic ascending order of their lower bounds (Line

2), producing a new sequence (i.e., (yj)
n
j=1). Then, referring to the circle number rep-

resentation, it considers each SASI in (yj)
n
j=1 and proceeding clockwise joins it with

the other SASIs in lexicographical order, producing a final SASI zi (function reduce

at Line 5). Finally, the SASI zi with the least cardinality is returned. The generalized

pseudo-join operator is sound by construction, but not monotone. Given three SASIs

r, t and z such that r v t, it is not always true that
∼⊔

({r, z}) v
∼⊔

({t, z}). As an

example, consider r = 3[12, 15]4, t = 3[9, 15]4 and s = 2[2, 8]4. We have r v t,
∼⊔

({r, s}) = 1[12, 8]4 and
∼⊔

({t, s}) = 1[2, 15]4. However, The two final SASIs are

not comparable, that it 1[12, 8]4 6v 1[2, 15]4 and 1[2, 15]4 6v 1[12, 8]4. This is a contra-

diction with what is believed in existing work, and in Section 4.4, we will prove that it

138

Chapter 4. BINTRIMMER: Towards Static Binary Debloating Through Abstract Inter-
pretation

is not possible to define an existential monotonic join over abstract domains based on

number circles.

The lack of the monotone property does not assure termination of the analysis [89],

as a least fixed point might not exist. Unfortunately, this property holds for every

domain based on number circles. To address this problem, we defined a widening

operator to guarantee termination of the analysis. As our widening operator is similar

to the one already defined in [89], it is not presented here.

Pseudo-Meet and Generalized Meet operators. The pseudo-meet operator (
∼
u) is

based on the intersection (Ω) between two SASI. By definition, the intersection between

two SASIs should contain (at least) all the values represented by both of its operands.

Formally, given two SASIs r and t the following must hold:

γ(r) ∩ γ(t) ⊆ γ(rΩt) (4.9)

We define the intersection operation between two SASIs by considering all of their

possible relative positions (Figure 4.4) as follows:

139

Chapter 4. BINTRIMMER: Towards Static Binary Debloating Through Abstract Inter-
pretation

Definition 7. Intersection Operator. Given two SASI r = sr[a, b]w and t = st[c, d]w,

the intersection operator Ω is defined as follows:

rΩt =



{} if r = ⊥ ∨ t = ⊥

{t} if r = t ∨ r = >

{t} if t v r

{r} if t = >

{r} if r v t

{sn[a1, d1]w, sn[c1, b1]w} if a ∈ t ∧ b ∈ t ∧ c ∈ r ∧ d ∈ r

{sn[c1, b1]w} if c ∈ r ∧ b ∈ t ∧ a 6∈ t ∧ d 6∈ r

{sn[a1, d1]w} if d ∈ r ∧ a ∈ t ∧ c 6∈ r ∧ b 6∈ t

{} otherwise

(4.10)

Where sn is calculated as the least common multiple (lcm) of sr and st. Note the

two SASIs {sn[a1, d1]w, sn[c1, b1]w} in Definition 4.10 (i.e., case c in Figure 4.4): a1

is the first common value between the SASI t and the sub-interval [a, d] of r, d1 is the

greatest value contained in the interval [a, d] such that (d1 − a) mod sn = 0, c1 is the

first common value between the SASI t and the sub-interval [c, b] of r and, finally, b1 is

the greatest value contained in the interval [c, b] such that (b1 − c) mod sn = 0. A very

similar reasoning applies to the remaining SASIs.

The first common value between two SASIs r = sr[a, b]w and t = st[c, d]w is

retrieved by finding the least non-negative integer values for kr and kt that satisfy the

following equality:

kr ∗ sr + a = kt ∗ st + c (4.11)

140

Chapter 4. BINTRIMMER: Towards Static Binary Debloating Through Abstract Inter-
pretation

The above equation is a linear diophantine equation that is solved for non-negative

values to find kr and kt. These values are used in Equation 4.11 to get the first common

value shared by two SASIs.

Finally, the pseudo-meet operator is defined as follows:

r
∼
u t =

∼
t(Ω(r, t)) (4.12)

As it relies on the pseudo-join operation, the pseudo-meet operation is also not asso-

ciative. For this reason, given a sequence S of SASIs, a generalized pseudo-meet has

been defined as follows:

r

∼⊔t =

∼⊔
({Ω(si, si+1)∀i, 0 ≤ i ≤ (#(S)− 1)}) (4.13)

Where si is the ith SASI in S.

Complement. Given a SASI r, the complement operator returns a SASI which repre-

sents the set of values not included by r:

⊥ = >

> = ⊥

sr[a, b]w = sn[b+w 1, a−w 1]w

(4.14)

Where the new stride, sn is computed as:

sn =


1 if sr = 0

gcd(sr, b−w a−w 2) otherwise

(4.15)

141

Chapter 4. BINTRIMMER: Towards Static Binary Debloating Through Abstract Inter-
pretation

Figure 4.5: Join in number circle.

4.4 Termination

During our study, we discovered that no abstract domain which represents numeric

entities as number circles can possibly form a lattice, as long as the definition of the

(pseudo-)join is existential.

To generalize our discussion, in the following proof we will refer to number circle’s

based abstract domains using the w-interval’s notation of [89]. This because [114] [47]

and SASI can be reduced to be particular cases of w-intervals.

Given two arbitrary w-intervals w and v, we define a join operator as existential if:

(a) it returns v if w v v, and

(b) it returns a w-interval z = v
∼
t w 6= > if w, v 6= > ∧ v 6= w.

Intuitively, the above means that an existential join operator returns a non-> inter-

val, if there exists an interval z such that w v z and v v z.

142

Chapter 4. BINTRIMMER: Towards Static Binary Debloating Through Abstract Inter-
pretation

As an example, consider the intervals in Figure 4.5. The definition of an existential

join operator should define an interval different than> as result of v
∼
tw. Both intervals

[a, d] and [c, b] are valid answers for an existential join operator.

We believe that this assumption is general and it should be used by any abstract

domains employed in any static analyses. In fact, if a join between two arbitrary w-

intervals would always return >, an analysis based on w-intervals would not give any

meaningful results.

In a lattice, by definition, there must exist a unique monotone join (as well as a

unique monotone meet) between two arbitrary elements of the poset. In the following,

we will show that if a join is existential, it cannot be monotone, and therefore the

abstract domain considered cannot be a lattice.

Both [114] [47] define existential join operators and, even though do not claim their

monotonicity, they wrongly claim their abstract domains to be lattices.

Proof. Considering w, v and x to be w-intervals, we have a monotone join if and only

if:

w v x =⇒ (w
∼
t v) v (x

∼
t v) (4.16)

As Definition 4.16 must hold for any join operators to be monotone, regardless of the

relative positions of x, w and v, for simplicity, we assume that w and v do not intersect.

In particular, we will refer to Figure 4.5 throughout the whole proof.

143

Chapter 4. BINTRIMMER: Towards Static Binary Debloating Through Abstract Inter-
pretation

Figure 4.6: Possible joins for an existential join operator.

We show now that given any existential (pseudo-)join operators one can always

choose a relative position for x such that w v x holds while Formula 4.16 does not.

Consider the interval z such that z = (w
∼
t v) = [e, f]. As

∼
t is existential by

hypothesis and v and w do not intersect and z 6= >, z’s relative position should be rep-

resented by either one of the two scenarios depicted in Figure 4.6. Note that, the cases

where z = [c, b] and z = [a, d] are particular cases of scenario 1 and 2 respectively, in

Figure 4.6.

Now, if x is equal to [a, d] and the (pseudo-)join operator is defined such that z falls

in scenario 1, we have:

w v x 6=⇒ (w
∼
t v) v (x

∼
t v) (4.17)

As (x
∼
t v) = [a, d] (by definition of existential join operator) and (w

∼
t v) falls in

scenario 1 (e.g., [c, b]), they are not two comparable elements of the poset.

144

Chapter 4. BINTRIMMER: Towards Static Binary Debloating Through Abstract Inter-
pretation

Similarly, if the join operator is defined such that z falls in scenario 2 and we con-

sider an x equal to [c, b], the same reasoning applies.

Therefore, whatever w-interval (different from >) is returned by the join of two

w-intervals, one can always have a w-interval such that the following is true:

v v x 6=⇒ v
∼
t w v x

∼
t w (4.18)

Proving that a monotone existential (pseudo-)join cannot exist in an abstract domain

based on number circles.

The major problem of the lack of monotonicity is that termination of the analysis is

not guaranteed.

Since our poset contains finite ascending chains, some of them on the order of 2w

elements, a widening operator that accelerates towards a fixed point is needed. In this

work, we use the same widening operator as defined in [89].

4.5 Signedness-Agnostic Strided Interval Operations

In this Section, we formally define various arithmetic and bitwise operations over

the SASI abstract domain.

Note that, as in binary analysis the signedness of an operation is in some cases ex-

plicit (e.g., IMUL), SASI’s implementation also includes signedness-aware operations.

145

Chapter 4. BINTRIMMER: Towards Static Binary Debloating Through Abstract Inter-
pretation

4.5.1 Addition and Subtraction

Adding two SASIs results in a SASI whose lower bound is the sum of the operands’

lower bound and whose upper bound is the sum of the operands’ upper bound. This

is similar to the addition operation defined in the well-known Interval arithmetic the-

ory [56].

Formally, the addition operation on two generic SASIs r = sr[a, b] and t = st[c, d]

is defined as follows:

r +w t =


⊥ if r = ⊥ ∨ t = ⊥

ss[a+w c, b+w d]w if #r + #t ≤ 2w

ss

> otherwise

(4.19)

Where ss = gcd(sr, st).

In the SASI domain, the lower and upper bounds and are expressed on a finite

number of bits, and the sum of bounds can wrap around, resulting in an arithmetic

overflow. This possibility is detected by considering the cardinality of the SASIs r

and t. In fact, if the sum of their cardinality is greater than the number of values

representable on a number circle on w bits using a stride ss, it means that starting from

the lower bound of r and proceeding clock-wise we would end up crossing r’s lower

bound once again. In this case, > must be returned.

To be sound, the stride for the new interval has to be calculated as the greatest

common divisor of the two operands strides.

146

Chapter 4. BINTRIMMER: Towards Static Binary Debloating Through Abstract Inter-
pretation

Similarly, the subtraction operation can be defined as:

r −w t =


⊥ if r = ⊥ ∨ t = ⊥

ss[a−w d, b−w c]w if r = sr[a, b]w ∧ t = st[c, d]w

> otherwise

(4.20)

Where again ss = gcd(sr, st).

4.5.2 Multiplication, Division and Modulus

Multiplication, Division and Modulus are interpretation-dependent operations, mean-

ing that the result of these operations depends on the signed or unsigned interpretation

of the values covered by the SASI operands [75].

A sound implementation of any interpretation-dependent operation should first com-

pute the results of applying the operation on both signed and unsigned interpretations

and then join these results to get the final result.

Each SASI is first separated at the North and South poles, so that the resulting

SASIs does not cross any pole (resulting in an unsound result) and so that the ordering

of both signed and unsigned interpretations can be reasoned about. To split a SASI on

the poles we use the cut function as defined in [89]:

cut(r) = ∪{ssplit(u)|u ∈ nsplit(r)} (4.21)

Where ∪ is the set union. Note that, both of the pole splittings are such that the join of

the resulting SASIs is greater or equal (in the poset ordering) than the original SASI.

147

Chapter 4. BINTRIMMER: Towards Static Binary Debloating Through Abstract Inter-
pretation

We then perform both signed and unsigned multiplication on these SASIs. Given

two SASIs that do not straddle any pole (e.g., r = sr[a, b]w and t = st[c, d]w), we

define signed multiplication (×ws) as follows:

r ×ws t =



⊥ if r = ⊥ ∨ t = ⊥

sn[a×w c, b×w d]w if m(a) = m(b) = m(c) = m(d)

∧ b× d− a× c < 2w

sn[a×w d, b×w c]w if m(a) = m(b) = 1

∧m(c) = m(d) = 0

∧ b× c− a× d < 2w

sn[b×w c, a×w d]w if m(a) = m(b) = 0

∧m(c) = m(d) = 1

∧ a× d− b× c < 2w

> otherwise

(4.22)

Where m is the function that extract the most significant bit of a bitvector and sn =

lcm(sr, st). As in the case of the addition operation, if, the multiplication overflows the

stride is set to 1 (> case).

Unsigned multiplication (×wu) is defined as:

r ×wu t =


⊥ if r = ⊥ ∨ t = ⊥

sn[a×w c, b×w d]w if b× d− a× c < 2w

> otherwise

(4.23)

These two multiplications are the same as defined by Kulisch in [75], and are sound

if the operand SASIs do not straddle the poles.

148

Chapter 4. BINTRIMMER: Towards Static Binary Debloating Through Abstract Inter-
pretation

Now, given two non-straddling SASIs, a sound signedness-agnostic multiplication

(×wus) can be defined as intersection of SASIs returned by ×wu and ×ws.

r ×wus t = (r ×wu t)Ω(r ×ws t) (4.24)

Finally, the general formula to multiply two SASIs can be defined using Generalized

join as:

r ×w t =

∼⊔
{m|u ∈ cut(r), v ∈ cut(t),m ∈ u×wus v} (4.25)

Note that, if the signedness of a multiplication can be inferred during a given analy-

sis (e.g., when explicitly specified by an operation), the corresponding signed-aware

multiplication (as defined above) is used.

For division and modulus, we use the same implementation as in [89] and set the

stride of the resulting SASI to 1. This is because it is not trivial to have a principled

approach to pick a precise stride (i.e., stride > 1).

4.5.3 Bitwise operations

In this Section, we formally define the various bitwise operations.

Or. Defining a precise and sound Bitwise Or is not trivial. We can use the unsigned

version of Warren’s algorithm [134] to compute the bounds. To use this method, we

need to first split the operand SASIs on the south pole (to make them unsigned), then

perform Warren’s algorithm, and then join the resulting SASIs.

149

Chapter 4. BINTRIMMER: Towards Static Binary Debloating Through Abstract Inter-
pretation

Given two generic SASIs such as r = sr[a, b]w and t = st[c, d]w, the algorithm

used to calculate the or operation between them is shown in code Listing 3.

Algorithm 3 Bitwise or.
1: procedure |w(r, t)
2: ret← []
3: for u in ssplit(r) do
4: for v in ssplit(t) do
5: t← min(ntz(u.stride), ntz(v.stride))
6: sn ← 2t

7: m← (1 << t)− 1
8: k ← (u.lb&m)|(v.lb&m)
9: u1 = [(u.lb& ∼ m), (u.ub& ∼ m)]
10: v1 = [(v.lb& ∼ m), (v.ub& ∼ m)]

11: [lb, ub]← u1

wr

|wv1
12: ret.append(sn[((lb& ∼ m)|k), (ub& ∼ m)|k)])
13: end for
14: end for
15: return

∼⊔
(ret)

16: end procedure

First, we split each SASI on the south pole, so that we can employ the unsigned

version of Warren’s or algorithm (indicated with
wr

|w). Then, for each SASI u and v

obtained from the splitting, we retrieve the number of trailing zeros (function ntz) in

the bitvector representation of the considered SASI strides, and we get the minimum

resulting value (line 5) to set a variable t. The stride of the new SASI is set to 2t.

This is done because all the values represented by the SASI resulting from u | v

share the same t low-order bits. Therefore, the choice of a stride equal to 2t is a sound

choice (line 6) [8]. The value of these t bits is k = (u.lb&m)|(v.lb&m) (where m =

(1 << t)− 1 and u.lb and v.lb means lower bound of u and v respectively).

Since every value represented by the final stride share the first t bits, the (w − t)

high-order bits are handled by masking out the obtained t low-order bits, and then

150

Chapter 4. BINTRIMMER: Towards Static Binary Debloating Through Abstract Inter-
pretation

applying unsigned version of Warren’s or algorithm for finding bounds for the SASI

resulting from u|wv (from line 9 to 11).

Finally, the SASI resulting from r |w t is obtained by applying the Generalized

join on the list of SASIs collected by applying the algorithm just explained. Since the

Warren’s algorithms employed are sound, the or operation is sound [8].

Not. Given a SASI r = sr[a, b]w, the not operation is formally defined as follows:

∼ r = sr[∼ b,∼ a]w (4.26)

This definition of the not operation is sound, as shown in [8].

And and Xor. Using De Morgan’s laws we can soundly define and (&w) and xor (⊕w)

operations using Not (∼) and Or (|w) as:

r &w t =∼ (∼ r |w ∼ t)

r ⊕W t =∼ (∼ r|wt) |w ∼ (r|w ∼ t)
(4.27)

Shifts. We first define the logical right shift (>>lw) of a SASI by a constant shift

amount k. First, we will discuss about a SASI whose stride is 1 can be shifted, then we

will generalize the discussion by including an arbitrary stride.

Also, in the following, the notation >>lw means logical right shift applied on

operands of w-bits long.

If a SASI x = 1[a, b]w does not cross the south pole (i.e., b ≥0 a or b ≥ a) a logical

right shift applied by shifting its bounds yields a sound result.

151

Chapter 4. BINTRIMMER: Towards Static Binary Debloating Through Abstract Inter-
pretation

To prove this claim, it is sufficient to show that relative ordering of the values in

such SASI are preserved after the shift. That is to say that for any two arbitrary values

c and d contained in the interval x (i.e., c ∈ x and d ∈ x) such that d ≥ c, the following

always holds: (d >>lw k) ≥ (c >>lw k).

Proof.

if d > c =⇒ ∃j ∈ N : ∀i : w − j ≤ i ≤ w,

bit(d, i) = bit(c, i) ∧ bit(d, j) = 1 ∧ bit(c, j) = 0

(4.28)

where bit(d, i) is the ith bit of the bitvector d. The above definition existentially quan-

tifies the most significant bit position where d and c differ i.e j.

Because of this, if k is lesser than j we have that (d >>lw k) > (d >>lw k), if k is

greater than j then (d >>lw k) = (c >>lw k). Therefore, (d >>lw k) ≥ (c >>lw k)

holds in any case.

This means that the order of the elements in x is maintained even when its bounds

are shifted. Now, since every value within x is greater (or equal) than its lower bound

and smaller (or equal) than its upper bound, if shifted they will be contained in the

interval [a >>lw k, b >>lw k].

Let us now consider the case where x crosses the south pole (i.e., b <0 a). In this

case, after the shifting the relative order between the two bounds might be inverted (i.e.,

a <0 b) as, regardless of the pole straddling, when a SASI is logically right shifted, both

of its bounds are placed in the left hemisphere on the number circle.

152

Chapter 4. BINTRIMMER: Towards Static Binary Debloating Through Abstract Inter-
pretation

This new SASI, though sound, can be unnecessarily large. The precision can be

improved.

In fact, we can split the interval x on the south pole, perform the shifting on the

splitted intervals and eventually pseudo-join them back. Because of the south split, no

relative inversion might happen among the resulting intervals and Formula 4.28 holds

resulting in a sound interval.

Let us now generalize the discussion by including the consider stride. The shifting

of the stride can be handled if its least significant k bits are zeros. Given a SASI

r = sr[a, b]w, if the stride’s least significant k-bits are zeros, then all the values in r

will share k least significant bits: None of the last significant k bits of sr can change

any of the (w−k) most significant bits for all values in r. This involves that if a SASI is

logically right shifted of k bits, all its values are influenced only by the most significant

(w − k) bits of sr. Therefore, in these cases a stride equal to S = sr >> k is a sound

choice.

On the other hand, if the stride does not have all its least significant k bits as zeros,

the only sound choice is to set the stride equal to 1.

Finally, given a SASI r = sr[a, b]w the logical right shift is defined as follows:

r >>lw t =


⊥ if r = ⊥
∼⊔
{sns[ls >> t, us >> t]| otherwise

ss[ls, us] ∈ ssplit(r)}

(4.29)

153

Chapter 4. BINTRIMMER: Towards Static Binary Debloating Through Abstract Inter-
pretation

Where sns is defined as follows:

sns =


max(ss >> t, 1) if lsb(ss, k) = 0k

1 otherwise

(4.30)

where lsb(ss, k) is a function that retrieves the least significant k bits from ss.

Following a similar reasoning, the arithmetic right shift (>>aw) is defined as:

r >>aw t =


⊥ if r = ⊥
∼⊔
{sns[lm, um]|ss[ls, us] ∈ nsplit(r)} otherwise

(4.31)

Where nsplit splits a SASI on the North, lm = (ls >> t) |m and um = (us >> t) |m.

m is the mask used to propagate the bit sign (i.e., m = ((2 ∗ ∗t − 1) << (w − t))),

sns is defined as explained before for the logical shift case.

Note that, the reasoning explained in 4.28 applies also to the arithmetic right shift

if the SASI does not cross the north pole.

The left shift is defined as follows:

r << t =


⊥ if r = ⊥
∼⊔
{sns[ls << t, us << t]w| otherwise

ss[ls, us]w ∈ ssplit(r)}

(4.32)

Where the new stride sns is calculated merely as max(ss << t, 1). The argument

to show the soundness of the right shifting is very similar to the one made for the left

shifting case and it will not be discussed again.

Finally, if the shift amount is represented by a SASI s, we consider every values be-

tween the lower bound and the upper bound represented by s to compute the requested

shift operation.

154

Chapter 4. BINTRIMMER: Towards Static Binary Debloating Through Abstract Inter-
pretation

4.5.4 Truncate

The truncate operation tr(r, k), truncates the given SASI r to a lower width k, where

r = sr[a, b]w and 0 < k < w.

The truncate operation is defined as follows:

tr(r, k) =



⊥ if r = ⊥

lsb(sr, k)[lsb(a, k), lsb(b, k)]k if a >>a k = b >>a k ∧

lsb(a, k) ≤ lsb(b, k)

lsb(sr, k)[lsb(a, k), lsb(b, k)]k if (a >>a k) + 1 =w

(b >>a k) ∧ lsb(a, k) 6≤ tr(b, k)

0[a&mask, a&mask]k if t ≥ k

2t[0k−t||lsb(a, t), 1k−t||lsb(a, t)]k otherwise

(4.33)

Where>>a is the arithmetic right shift,mask = (2k−1) and t is the number of trailing

zeros in the bit-vector representation of sr. For example, if sr = 101000, then t = 3.

As already mentioned, lsb(x, y) is a function which retrieves the least significant y bits

from x.

In the above, definition the bounds in cases two, three, and four are retrieved using

the approach of Wrapped Intervals [89], thus these are sound as long as the stride used

is sound.

Given a generic SASI r = sr[a, b]w, only the least significant k bits of sr influence

the least significant k bits of the values represented by r. Therefore, if we consider only

the least significant k bits of all the values represented by r, sr influences them in the

155

Chapter 4. BINTRIMMER: Towards Static Binary Debloating Through Abstract Inter-
pretation

same way as 0w−klsb(sr, k) does. Therefore, the stride lsb(sr, k) is a sound choice for

cases two and three.

Observation: If a stride has t trailing zeros in its bit-vector representation, the least

significant t bits of all the values in the SASI r are going to be identical.

Based on the above Observation, in case four (where t ≥ k), the least significant k

bits of all values in the operand SASI(r) will also be identical, resulting in a SASI with

a single value.

In the last case, where t < k, we still have the same least significant k bits in all the

values. However, the bits from position t to k might change. To be sound, we consider

all the possible values for the bits from position t to k i.e 0k−t to 1k−t. The stride is

computed so that the least significant k bits of all the values in the resulting SASI are

identical (i.e., 2t). Note that, this case results in >, when t = 0.

4.5.5 Extension operations

We defined three types of extension operations: signdness-agnostic extension (or

simply extension), signed extension and zero extension.

Extension. The extension operation ext(r, k) extends the given SASI r to a higher bit

width k, where r = sr[a, b]w and k > w.

156

Chapter 4. BINTRIMMER: Towards Static Binary Debloating Through Abstract Inter-
pretation

Similar to multiplication, an extension is an interpretation-dependent operation,

where the result of the operation depends on the signed or unsigned interpretation of

the values covered by the SASI operand.

We implement the extension operation such that the resulting SASI is sound irre-

spective of the interpretation of the operand SASI. As an example, consider the SASI

r = 1[0010, 1010]4. our implementation results in ext(r, 5) = 1[00010, 11010]5, which

is sound irrespective of the signed or unsigned interpretation of r.

Formally, extension operation is defined as:

ext(r, k) =



sr[0k−w||a, 0k−w||b]k if m(a) = m(b) = 0

sr[0k−w||a, 1k−w||b]k if m(a) = m(b) = 1∧

(10w−1 −w a) ≤ (10w−1 −w b)

sr[1k−w||a, 1k−w||b]k if m(a) = m(b) = 1∧

(10w−1 −w b) ≤ (10w−1 −w a)

sr[0k−w||a, 0k−w||b]k if m(a) = 1 ∧m(b) = 0

sr[0k−w||a, 1k−w||b]k if m(a) = 0 ∧m(b) = 1

0[0k−w||a, 1k−w||b]k if m(a) = 1 ∧m(b) = 1 ∧ a = b

(4.34)

Where m is the function that extract the most significant bit of a bit-vector.

The inequality (10w−1 −w a) ≤ (10w−1 −w b) ensures that r does not straddle

along the north pole. Similarly, (10w−1 −w b) ≤ (10w−1 −w a) ensures that r does

straddle along the north pole.

157

Chapter 4. BINTRIMMER: Towards Static Binary Debloating Through Abstract Inter-
pretation

We also implemented a signed extension operator as well as a zero extension oper-

ator. As these two operations are trivial they are not reported here.

Signed extension. The signed extension operation sext(r, k) extends the SASI r to a

higher bit width k, where r = sr[l, u]w and k > w. The extension depends on the

values represented by r, and it is defined as follows:

sext(r, k) =

∼⊔
{ss[ls|kM(ls), us|kM(us)]w, ss[ls, us]w ∈ ssplit(r)} (4.35)

Where M(x) = ((m(x) << (k − w)) −m(x)) << w), and m(x) represent the most

significant bit of the bit-vector x.

Note that, as a consequence of the above definition, if r falls completely in one

hemisphere, the sign-extend operation merely prepends r’s most significant bit to its

bounds (k − w) times.

Zero extension. The zero extension operation zext(r, k), where r = sr[l, u]w, preprend

(w − k) zeros to r and adjusts the number of bits to w. Note that, this operation means

moving a SASI to the left hemisphere of the number circle.

4.6 Discussion

As stated in Section 4.2, our approach is based on the existence of a CFG recovery

procedure PCFG that guarantees that all the basic blocks of a function, and its boundary,

are retrieved. We do not make any assumption about the capability of PCFG to resolve

158

Chapter 4. BINTRIMMER: Towards Static Binary Debloating Through Abstract Inter-
pretation

any indirect jumps, nor to resolve any path predicates. Given such a CFG recovery

procedure, our approach can guarantee the soundness of the results.

Though our hypothesis might seem too restrictive in theory, we found it is not to be

in practice. In fact, if a binary does not contain data within the boundary of a function f ,

state-of-the-art CFG recovery procedures, such as [116], can recover every basic blocks

and boundary of f precisely. In our experience, most of the employed compilers (e.g.,

gcc/g++) insert data only in specific data sections (e.g., rodata). The only exception

is represented by jump tables, which might be inserted within a function boundary, thus

fooling (in principle) decompilers based on linear sweeping (e.g., objdump 1).

However, most recent decompilers based on recursive approaches implement algo-

rithms to precisely recover jump tables, and thus, providing in practice the guarantee

our approach needs.

4.7 Evaluation

We run two different evaluations. First, we evaluate the precision of SASI against

the related work on signedness-agnostic abstract domains. Then, we implement our

static program bloating approach in a tool, called BINTRIMMER, and evaluate its effi-

ciency.

1https://sourceware.org/binutils/docs/binutils/objdump.html

159

Chapter 4. BINTRIMMER: Towards Static Binary Debloating Through Abstract Inter-
pretation

4.7.1 Signedness-Agnostic Strided Intervals

To compare SASI against Wrapped Interval (WI) [89] and quantify its precision, we

performed two evaluations using range analyses on both source code and binary files.

As shown in the following two sections, on average SASI is 98% more precise than the

Wrapped Interval abstract domain.

Source code. For this evaluation, we implemented our Signedness-Agnostic Signed

Interval analysis on LLVM and downloaded the publicly-available Wrapped Interval

analysis. Then, we retrieved the same test suite utilized by Navas et al. in their

work [89]: the SPEC CPU2000 2. This dataset is an industry-standardized CPU-

intensive benchmark suite, developed from real user applications. As it contains an

outstanding amount of mathematical and bitwise operations, it is particularly suited to

evaluate abstract domains for numerical entities. Unfortunately, two benchmarks of

SPEC CPU2000 (i.e., 300.twolf and 255.vortex) were unavailable at the time of the

evaluation. Therefore, we used one more benchmark (462.libquantum) from the latest

SPEC CPU (i.e., CPU2006 3). Note that, we did not use the whole SPEC CPU2006

suite, as it is only available for purchase. Then, we ran the LLVM range analysis 4 on

each program in our dataset by using both the SASI and Wrapped Interval domains. For

each one of these test, we collected four statistics: The number of variables recovered
2https://www.spec.org/cpu2000/
3https://www.spec.org/cpu2006/
4https://code.google.com/archive/p/range-analysis/

160

Chapter 4. BINTRIMMER: Towards Static Binary Debloating Through Abstract Inter-
pretation

by using SASI and Wrapped Intervals, which were not > when the analyses reached a

fix-point (indicated as RSASI and RWI , respectively). The number of recovered vari-

ables where SASIs provided a better over-approximation (i.e., lower cardinality) than

the Wrapped Intervals (indicated as PSASI), and finally the number of variables whose

Wrapped Interval representation was more precise than the SASI’s (indicated as PWI).

The results of our evaluation are represented in Figure 4.7. ∆ Variables Recovered

indicates the difference between RSASI and RWI , and the percentages above each bar

quantify the variable recovery effectiveness of SASI (i.e., RSASI−RWI

RSASI∪RWI
). ∆ Precise Inter-

vals indicates the difference between PSASI and PWI), and, similarly, the percentages

above each bar quantify the variable recovery precision of SASI (i.e., PSASI−PWI

PSASI∪PWI
).

As one can see, SASI always recovered more variables than Wrapped Intervals

(the ∆ of variables recovered is never a negative value), and, in most cases, the vari-

ables recovered by SASI were more precise than those recovered by Wrapped Interval.

Nonetheless, there were a few cases where the variables recovered by Wrapped Inter-

vals were more precise than SASI (e.g., 3.4% in bzip2). We investigated them and dis-

covered that it was caused by the lack of associativity of the pseudo-join, as explained

in Section 4.3. In fact, even though our domain’s pseudo-join gives more precise re-

sults than the Wrapped Intervals’ if taken individually, this is not strictly true if we

chain them. However, our results clearly show that these cases are rare. For example,

SASI recovered 1,170 (out of a total of 5,027) variables in gap whose intervals were

161

Chapter 4. BINTRIMMER: Towards Static Binary Debloating Through Abstract Inter-
pretation

Figure 4.7: Source Code Evaluation. ∆ Variables Recovered indicates the difference between the
amount of variables recovered by SASI and Wrapped Intervals. ∆ Precise Intervals indicates the dif-
ference between the number of instances SASI provided a better over-approximation and the number of
instances Wrapped Intervals did.

more precise than those provided by Wrapped Intervals. On the other hand, Wrapped

Intervals estimated only one variable in a more precise way than SASI. According to

our tests on source codes, we can conclude that, on an average, SASI is 98% more

precise than Wrapper Intervals (shown by ∆ of precise intervals).

Binary files. To compare SASI’s precision against Wrapped Interval’s on binary

files, we implemented Navas’s abstract domain in angr [116]. In this evaluation, we

collected all the binaries that DARPA released in the run-up to the CGC final event 5.

Then, we considered the functions of each binary and performed the angr’s value-set

analysis on them. Therefore, we collected the SASI and Wrapped Interval represen-

tations of each variable (i.e., memory location and CPU register) for each function at

5http://archive.darpa.mil/cybergrandchallenge/

162

http://archive.darpa.mil/cybergrandchallenge/

Chapter 4. BINTRIMMER: Towards Static Binary Debloating Through Abstract Inter-
pretation

Figure 4.8: Binary Evaluation. ∆ Variables Recovered indicates the difference between the amount
of variables recovered by SASI and Wrapped Intervals. ∆ Precise Intervals indicates the difference
between the number of instances SASI provided a better over-approximation and the number of instances
Wrapped Intervals did.

each program point, and collected the same four statistics (i.e., RSASI , RWI , PSASI and

PWI) already introduced during the source code evaluation. The results collected are

depicted in Figure 4.8.

As one can notice, even in this case SASI always outperformed Wrapped Inter-

vals in terms of variables recovered (the ∆ of variables recovered is never a negative

value). Furthermore, we noticed that SASI excelled over Wrapped Intervals in terms

of precision of recovered variables. In fact, in the case of binaries, SASI succeeded

in recovering strictly more precise variables (100% values in ∆ Precise Values), in ev-

ery test but once (91.6% success in KPRCA 00058). This result clearly shows the

advantage of employing the SASI abstract domain when analyzing binary files.

163

Chapter 4. BINTRIMMER: Towards Static Binary Debloating Through Abstract Inter-
pretation

4.7.2 BINTRIMMER

Our approach to program debloating was implemented in a tool, called BINTRIM-

MER. As introduced in Section 4.2, BINTRIMMER retrieves and patches those basic

blocks in a binary that cannot be executed under any execution of a program. Also, in

the following we use the term partial trimming when a function is partially removed,

that is when some function’s basic blocks were removed, but not all. BINTRIMMER

was evaluated by using six binaries linked against two different C libraries: TinyExp 6

(containing 555 LOC) and b64 7 (containing 192 LOC). We dynamically linked both of

these libraries to the examples provided on their respective websites, for a total of six

different programs.

After running BINTRIMMER and removing the identified dead code, we dynami-

cally linked every binary to their patched library, and fuzzed them using AFL 8 for 48

hours. No crash was registered. Table 4.1 summarizes the results of this evaluation.

Total Trimmed is the percentage of code patched, the Min Partials, Max Partials and

Avg Partials values are calculated by considering only those functions that are not com-

pletely patched by BINTRIMMER. For each of these, we calculate their size (in bytes)

and the number of patched bytes and report minimum, maximum, and average values

respectively. The Gadgets Removed column represents the percentage of ROP gadgets

6https://github.com/codeplea/tinyexpr
7https://github.com/littlstar/b64.c
8http://lcamtuf.coredump.cx/afl/

164

https://github.com/codeplea/tinyexpr
https://github.com/littlstar/b64.c
http://lcamtuf.coredump.cx/afl/

Chapter 4. BINTRIMMER: Towards Static Binary Debloating Through Abstract Inter-
pretation

(retrieved with ROPGadget 9) removed by patching each binary’s library. The columns

Tot ICF, ICF Resolved angr, and ICF Resolved BINTRIMMER show the total number

of indirect control-flow transfers, the percentage of those resolved by angr alone, and

the percentage of indirect control-flow transfer resolved by BINTRIMMER, respectively.

Finally, we report the Time in minutes employed to analyze each program.

Note that, failing to resolve even a single indirect control-flow transfer (i.e., ICF

resolved less than 100%) might result in an incomplete CFG, and, therefore, an un-

safe program debloating. We also manually checked for each of the six programs the

completeness of the recovered CFG: while one CFG contained a super-set of all the pos-

sible control-flow transfers (completeness), the remaining five contained all and only

the possible control-flow transfers (sound and complete). Note also that BINTRIMMER

was able to patch code within functions (Partials columns). This is an important result

as in these cases we outperform even a static linker: To the best of our knowledge, no

linker can remove code within functions.

Finally, as we can see from the reported results, there are cases where our approach

can remove a conspicuous portion of dead code: in TinyExpr3, we soundly removed

65.67% of the text section, with 40.33% represented by basic blocks within functions.

9https://github.com/JonathanSalwan/ROPgadget

165

https://github.com/JonathanSalwan/ROPgadget

Chapter 4. BINTRIMMER: Towards Static Binary Debloating Through Abstract Inter-
pretation

Table 4.1: BINTRIMMER Results. Total Trimmed represents the total amount of code patched, Min,
max and Avg Partials indicates the amount of code partially removed with functions. Gadgets Removed
reports the amounts of ROP gadgets removed, Tot ICF is the total number of indirect control-flow trans-
fers, and ICF Resolved angr and ICF Resolved BINTRIMMER indicates the percentage of ICF resolved
by angr and BINTRIMMER respectively. Time (min) shows the time elapsed to analyze the binary.

Program Total Min Max Avg Gadgets Tot ICF Resolved ICF Resolved Time

trimmed Partials Partials Partials Removed ICF angr BINTRIMMER (min)

TinyExpr1 53.69% 3.62% 83.63% 29.12% 41.3% 2419 99.25% 100% 43

TinyExpr2 7.43% 0% 0% 0% 4.9% 2449 98.65% 100% 87

TinyExpr3 65.67% 3.7% 83.63% 40.33% 56.9% 2419 99.25% 100% 37

b641 1.17% 0% 0% 0% 3.0% 2389 99.6% 100% 24

b642 50.37% 0% 0% 0% 10.6% 2389 99.6% 100% 24

b643 34.43% 1.13% 0% 0% 36.4% 2389 99.6% 100% 22

166

Chapter 5

DIANE: Identifying Fuzzing Triggers
in Apps to Generate
Under-constrained Inputs for IoT
Devices

In previous Chapters, we studied how to use static analyses to find bugs in firmware

samples (see Chapter 2 and Chapter 3) and how to reduce the attack surface that an

attacker could rely on to harm users (see Chapter 4). In this Chapter, we see how to use

a combination of static and dynamic analyses to find bugs in firmware for IoT devices

when the device itself is available but the firmware is not.

As introduced in Chapter 1, black-box approaches, which do not require access to

a device’s firmware, are usually employed in the IoT domain. However, black-box

approaches usually require knowledge about the data format accepted by the device

under analysis. Unfortunately, given the heterogeneity and lack of documentation of

the protocols adopted by IoT devices, these approaches are hardly applicable.

167

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

However, most IoT devices have companion apps [136,151] (i.e., mobile apps used

to interact with the device), which contain the necessary mechanism to generate valid

inputs for the corresponding device. Based on this observation, Chen et al. [21] pro-

posed a tool, IoTFuzzer, which fuzzes IoT devices by leveraging their companion apps.

IoTFuzzer analyzes the companion app and retrieves all the paths connecting the app’s

User Interface (UI) to either a network-related method or a data-encoding method.

Then, IoTFuzzer fuzzes the parameters of the first function that handles user input

along these paths, thus generating valid fuzzing inputs for the IoT device.

While this approach yields better results than randomly fuzzing the data directly

sent to the IoT device over the network, in practice, it consists in mutating variables

immediately after being fetched from the UI, before the app performs any input val-

idation or data processing. Consequently, the effectiveness of IoTFuzzer suffers sub-

stantially when the app sanitizes the provided input—our experiments (Section 5.4.5)

demonstrate that 51% of IoT companion apps perform app-side input validation. In-

deed, recent research showed that mobile apps often perform input validation to trigger

different behaviors [149]. For these reasons, IoTFuzzer’s approach cannot produce

under-constrained (i.e., not affected by app-side sanitization) yet well-structured (i.e.,

accepted by the IoT device) fuzzing inputs, which can reach deeper code locations,

uncovering more vulnerabilities.

168

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

In this Chapter, I propose DIANE: a novel fuzzing tool for IoT devices that leverages

companion apps to generate under-constrained yet well-structured fuzzing inputs. The

key observation behind DIANE is that there exist functions inside the companion app

that can be used to generate optimal (i.e., valid yet under-constrained) fuzzing inputs.

As we will see, such functions, which we call fuzzing triggers, are executed before any

data-transforming functions (e.g., network serialization), but after the input validation

code. Consequently, they generate inputs that are not constrained by app-side sanitiza-

tion code, and, at the same time, are not discarded by the analyzed IoT device due to

their invalid format.

In the remaining, first I explain the motivation behind this work, then I discuss

DIANE in detail and the results we obtained after using DIANE to analyze 11 popular

IoT devices. DIANE identified 11 bugs, 9 of which are zero days. Our evaluation also

shows that without using fuzzing triggers, it is not possible to generate bug-triggering

inputs for many devices.

5.1 Motivation

To motivate our approach and exemplify the challenges that it addresses, consider

the snippet of code in Figure 5.1. The app utilizes the method PTZ (Line 2) to send po-

sition commands (i.e., spatial coordinates) to an IoT camera. To do this, PTZ invokes

169

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

1 // Android Java Code
2 public int PTZ(String adminPwd, int x, int y, int z){
3 //..
4 byte data[] = MsgPtzControlReq(x, y, z);
5 if (!adminPwd.contains("&") && // Input
6 !adminPwd.contains("'")){ // validation
7 SendMsg(adminPwd, camId, data);
8 }
9 }

10
11 public static native int SendMsg(String adminPwd, String camId, byte[] data);
12
13 // Java Native Interface
14 int Java_SendMsg(char* pwd, char* cam_id, Msg* msg){
15 prepare_msg(pwd, cam_id, msg);
16 notify_msg(msg);
17 }
18 // JNI - Different thread
19 void sender() {
20 Msg* msg = get_message()
21 send_to_device(msg);
22 }

Figure 5.1: Snippet of code that implements a sanity check on the admin password, and uses the
Java Native Interface to send messages to the device. The example is based on the Wansview app in our
dataset.

the native function SendMsg (Line 7), which prepares the data to be sent (Line 15),

and stores it into a shared buffer (Line 16). In parallel, another thread reads the data

from the same buffer (Line 20), and sends commands to the device (Line 21). Notice

that the IoT camera requires a password to authenticate commands, and the app per-

forms a sanity check on the password string (Lines 5 and 6). This example shows two

crucial challenges that have to be faced when generating IoT inputs from the companion

apps.

First, apps communicate with IoT devices using structured data, encoded in either

known protocols (e.g., HTTP), or custom protocols defined by the vendor. Messages

that do not respect the expected format are immediately discarded by the device, and,

170

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

consequently, cannot trigger deep bugs in its code. In the example, the app uses the

function prepare_msg (Line 15) to create a correctly structured message.

Second, while it is crucial to generate correctly structured inputs, an effective ap-

proach has to avoid generating inputs that are constrained by app-side validation code.

In the example, the function PTZ (Line 2) forbids the password to contain the charac-

ters & and '. However, the presence of these characters may be crucial in generating

crash-triggering fuzzing inputs.

The insight from the authors of IoTFuzzer is to leverage the companion app to

transform fuzzing inputs into a format that the device can process. This means that

the input values need to be mutated before the app “packages” and sends them to the

device. While this is true, our crucial insight is that the mutation indeed has to occur

before the app packages the inputs, but after the app performs any input validation,

which is not done by IoTFuzzer. Note that, with the expression app-side validation we

refer to all types of constraints that the app imposes on the data sent to an IoT device.

These constraints might be imposed by typical sanitization checks (e.g., limiting the

length of a string) or by parameters hard-coded in the generated request (e.g., hard-

coded attributes in a JSON object).

Our work fills this gap: We identify strategic execution points that produce inputs

that are not affected by the constraints that the app logic imposes. To achieve this goal,

we analyze an IoT device companion app, and focus on identifying effective fuzzing

171

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

triggers: Functions that, when used as entry points for fuzzing, maximize the amount

of unique code exercised on the device’s firmware, thus potentially triggering security-

relevant bugs. Consider, as an example, the app’s execution as a sequence of functions

that receives data from the UI and send it over the network. On the one hand, if the

fuzzed function is too close to the UI, the fuzzing is ineffective due to app-side valida-

tion that might be present later in the execution. On the other hand, picking a function

too close to the point where data is put onto the network might be ineffective. In fact,

some protocol-specific data transformations applied early in the execution would be

skipped, causing the generated inputs to be dropped by the IoT device. In Figure 5.1

the function sendMsg represents a fuzzing trigger.

Our approach identifies these fuzzing triggers automatically, relying on a combina-

tion of dynamic and static analyses, without the need for any a priori knowledge about

neither the firmware nor the network protocol used by the analyzed IoT device. Addi-

tionally, previous work [21] relies on specific sources of inputs (e.g., text boxes in the

app’s UI) to bootstrap its analysis, and does not mutate data generated from unspecified

sources (e.g., firmware updates through the companion app triggered by a timer). Our

bottom-up approach (explained in Section 5.2) does not make any assumptions on input

sources and is, therefore, more generic than the related work.

The example we discussed in this Section is the simplified version of the code im-

plemented in the Wansview app. We also note that app-side validation is prevalent in

172

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

real-world apps, and that the challenges we described do not only apply to this exam-

ple: Our experiments, discussed in Section 5.4, show that addressing these challenges

is fundamental, and that current state-of-the-art tools cannot effectively address them.

5.2 DIANE

While our goal is to find bugs in IoT devices, given the general unavailability of

the code running in them, we focus our analysis on these devices’ companion apps.

Our key intuition is to identify and use, within these companion apps, those functions

that optimally produce inputs for the analyzed IoT devices. These optimal functions

efficiently produce inputs that are valid (i.e., not discarded by the IoT device) yet under-

constrained (i.e., more likely to trigger bugs in the IoT device).

Automatically identifying these functions is a challenging task because the com-

plexity of the companion apps, the usage of native code, and the presence of multiple

threads rule out approaches based entirely on static analysis. Consequently, we de-

veloped an approach based on a novel analysis pipeline built on top of four different

analyses: i) static call-graph analysis, ii) network traffic analysis, iii) static data-flow

analysis, and iv) dynamic analysis of the function arguments.

In contrast with similar work [21], our approach does not make any assumption

on how the app’s user interface influences the data sent to the controlled IoT device,

173

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

and it avoids app-side sanitization on the generated data. Our analysis does not start by

considering UI-processing functions, but, on the contrary, uses a novel “bottom-up” ap-

proach. Specifically, we start from identifying low-level functions that potentially gen-

erate network traffic, and then we progressively move “upward” in the app call-graph

(i.e., from low-level networking functions to high-level UI-processing ones). This ap-

proach allows us to identify functions that produce valid yet under-constrained inputs,

skipping all the sanitization checks performed by UI-processing functions. We then

use these functions, which we call fuzzing triggers, to efficiently fuzz the analyzed IoT

device, while monitoring it for anomalous behaviors, which indicates when a bug is

triggered.

We implemented our approach in a tool named DIANE, depicted in Figure 5.2.

DIANE works in two main phases: Fuzzing Trigger Identification, and Fuzzing. In

the Fuzzing Trigger Identification phase, DIANE identifies optimal functions within the

companion app, that, when invoked, generate under-constrained well-structured inputs

for the analyzed device. Then, during the Fuzzing phase, these functions are used to

generate data that is sent to the analyzed device using a local network connection.

Our approach is independent of the network medium used by the analyzed app.

We applied it to both apps communicating with their related IoT device over WiFi and

Bluetooth (Section 5.3.2). DIANE fuzzes IoT devices that receive commands through

a local connection between the device and the companion app. Though some devices

174

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

Static Analysis

Candidate
sendMessage

Dynamic Analysis

API Hooking

Response
Monitoring

Network Activity
Detection

UI Replay

Filtered
sendMessage

Fuzzing

Validated
sendMessage

Crashes

Clustering Hybrid Analysis

sendMessageData Transforming
Function

Fuzzing
Triggers

Companion
App

IoT
Device

Figure 5.2: Using static analysis, DIANE first identifies candidate sendMessage functions. Then, it
runs the companion app, replaying a recorded user interaction, to validate the candidate sendMessage
functions. Next, DIANE uses a hybrid analysis to identify data-transforming functions and, therefore,
fuzzing triggers. Finally, DIANE fuzzes the validated triggers and identifies crashes by monitoring the
device responses.

might receive commands from cloud-based endpoints, research showed that the vast

majority of them (95.56%) also allow some form of local communication (e.g., during

the device setup phase) [3].

5.2.1 Fuzzing Trigger Identification

Intuitively, fuzzing triggers are functions that, in the app’s control flow, are located

in between the app-side validation logic and any data-transforming (e.g., message seri-

alization) function occurring before sending data over the network. Precisely, given an

execution trace from a source of input (e.g., data received from the UI) to the function

175

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

sending data over the network, a fuzzing trigger is defined as a function that dominates1

all data-transforming functions and post-dominates all input-validating functions. We

consider the first data-transforming function in the trace a valid fuzzing trigger, as it

dominates every other data-transforming function (itself included).

Our bottom-up Fuzzing Trigger Identification algorithm is composed of four steps:

i) sendMessage Candidates Identification, ii) sendMessage Functions Validation, iii)

Data-Transforming Function Identification, and iv) Top-Chain Functions Collection.

Algorithm 4 lists the pseudo-code of our approach.

Step 1: sendMessage Candidates Identification. We begin by identifying the func-

tions, in the companion app, that implement the necessary logic to send messages to

the IoT device. We call these functions sendMessage functions.

Identifying these functions in an automated and scalable way is difficult. Com-

panion apps might rely on ad-hoc native functions directly invoking system calls to

implement sendMessage functions. Furthermore, we found that these functions might

be executed within separate threads, which makes it harder for any analyses (both static

or dynamic) to precisely track data flows between the app’s UI and sendMessage func-

tions. However, our key insight is that the companion app must contain “border” func-

tions, situated between the app core functionality and external components (i.e., the

1We refer to the dominance concept of the call graph theory, where a node d dominates a node n if
every path from the entry node to n must go through d. Also, we say that a node p post-dominates n if
every path from n to an exit node passes through p.

176

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

Android framework or native libraries), which, when executed, eventually trigger a

message to be sent to the IoT device. Throughout the rest of this Chapter, we consider

these border functions our sendMessage functions.

In our approach, we first identify candidate sendMessage functions by statically an-

alyzing the companion app. We aim at finding all the border methods that might imple-

ment the network interactions with the analyzed IoT device (function getBorderMethods

in Algorithm 4). Specifically, we collect all the methods that perform (at least) a call to

native functions or a call to methods in the Android framework that implement network

I/O functionality (see Section 5.3.1 for more details).

Step 2: sendMessage Functions Validation. We dynamically execute the app and

leverage API hooking to validate the candidate sendMessage functions. In order to es-

tablish whether a border function is a valid sendMessage function we could, in theory,

i) dynamically execute the function multiple times and check whether it generated net-

work traffic each time, and ii) prevent the app from executing the function and check

whether or not network traffic is still generated. Unfortunately, we found that prevent-

ing a function to be executed, as well as forcing the app to execute the same function

multiple times, usually causes the app itself to crash. To solve these issues, we adopt a

different approach, based on timestamps and machine learning.

First, we dynamically hook all the candidate functions and run the app. When we

observe network activity, we register the last executed candidate sendMessage function.

177

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

In particular, each time a candidate sendMessage function is executed, we collect the

elapsed time between its execution and the observed network activity. Then, we lever-

age the K-mean algorithm to cluster the observed elapsed time measures. Specifically,

we group our candidates into two clusters (i.e., k = 2). To do so, we compute each

feature vector as the mean, standard deviation, and mode of the elapsed times of each

candidate. The rationale is that functions that cause network activity have a smaller

mean and standard deviation, as they are less affected by noise. Finally, among the

sendMessage candidates, we select those belonging to the cluster having the smallest

mean of the elapsed times. Only the sendMessage functions within this cluster will be

considered in the subsequent steps of our analysis. This approach is represented by the

function dynamicFilter in Algorithm 4.

Step 3: Data-Transforming Function Identification. While sendMessage functions

are intuitively good triggers for performing fuzzing, apps may apply data-transformations

in functions executed before a sendMessage function. A typical example of a data-

transforming function is represented by an encoding method that takes as input a list of

integers and serializes it to a sequence of bytes.

As previously explained, fuzzing triggers are functions that, in the app’s control

flow, are located before any data-transforming function. Fuzzing a function located in

between a data-transforming function and a sendMessage function would likely pro-

178

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

duce invalid inputs that are discarded by the IoT device. Thus, to find fuzzing triggers,

we first need to identify the data-transforming functions applied to the data being sent.

This task presents different challenges. First, the data being sent might be contained

in a class field, which is referenced by the sendMessage function. This field might be

theoretically set anywhere in the app code, including within other threads. Furthermore,

for each field, we need to consider its parent classes, as the variable holding the message

to be sent might be inherited by a different class.

In our approach, we take into account these issues. We first statically identify the

possible variables that hold the data being sent by the considered sendMessage func-

tion, and the code locations where these variables might be set in the app (function

getArgAndObjLocs in Algorithm 4). To achieve this, we create a set Sv containing

tuples (v, cl), where v is a variable used by the sendMessage (i.e., sendMessage argu-

ments or objects referenced within the sendMessage body), and cl is the code location

where v is set.

Then, we identify data-transforming functions. For each tuple (v, cl) ∈ Sv, we

perform a static inter-procedural backward slicing (Line 6 in Algorithm 4) from cl up

to any function retrieving values from any UI objects. Then, we divide the computed

program slices in function scopes (getFunctionScopes at Line 7). Given a program

slice, a function scope is defined as a subsequence instf of sequential instructions in

the slice that belong to the same function f .

179

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

For each collected function scope, we perform a liveness analysis [94]: We consider

the variables (i.e., local variables and class fields) referenced within the function scope,

and we compute the set Lif of variables that are live at the beginning of the scope, and

the set Lof of variables that are live at the end of the scope (Line 8). For example, if

a function f is traversed by the slice, the variables that are live at the beginning of the

function scope instf are f ’s arguments and the class fields that are read before being

written in f . The variables that are live at the end of f ’s scope are the returned variable

and the class fields that f creates or modifies.

To identify data-transforming functions, we leverage the observation that these

functions increase the entropy of the data they consume, as explored by related work [21].

Therefore, we hook the functions we identified in a slice, we dynamically run the app,

and we calculate the Shannon entropy [65] of the data assigned at runtime to each vari-

able v contained in Lif and Lof (more details about how we calculate the entropy are

provided in Section 5.3.3). If v is a primitive variable (e.g., int), or a known type (i.e.,

String, Integer, Float, and Double), we convert the data it contains in its byte

representation and calculate the Shannon entropy of this list of bytes. Conversely, if v

is a class field, we retrieve its class definition and consider each field variable vc of v

whose type is either primitive or known. Then, we compute the entropy of each one of

these vc variables, and add them to either the Lif set or to the Lof set, depending on

which live set v belongs.

180

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

Finally, we inspect every collected function scope and calculate the quotient de be-

tween the maximum entropy registered among all the variables inLof and the minimum

value of entropy registered among all the variables in Lif (Line 11). If de is greater than

a certain threshold Tf (set to 2.0 in our experiments, as previous work suggested [132]),

we consider the function f to be a data-transforming function (Line 12).

Step 4: Top-Chain Functions Collection. Data-transforming functions are usually

executed in precise sequences to adequately prepare the data to be sent to an IoT de-

vice. For instance, a companion app may encode some user data in base64, and then

encapsulate it in an HTTP request.

We call a sequence of data-transforming functions a transformation data chain, and

we refer to the first function in the sequence with the term top-chain function. We say

that a top-chain function f affects a variable v if modifying the content of f ’s variables

eventually affects v’s value.

Of particular interest for us are the top-chain functions that affect sendMessage

variables. In fact, if we control the variables of these top-chains, we can control the data

sent to the analyzed IoT device. In particular, this data is both valid (i.e., accepted by

the IoT device) and not affected by unnecessary app-side input validation. As such, top-

chain functions that affect sendMessage variables represent the optimal fuzzing triggers

to stimulate the IoT device functionality.

181

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

To identify these top-chain functions, we build the dominance tree2 of each data-

transforming function detected at the previous step (Line 13), and select those data-

transforming functions that are not dominated by any other data-transforming function

(Line 16). Finally, we consider as fuzzing triggers the collected top-chain functions.

Note that, if no data-transforming function dominates a sendMessage function, we

consider the sendMessage as a fuzzing trigger (Line 14, 15, and 16). This could happen

when, for instance, the companion app does not contain data-transforming functions.

Note finally that, in principle, app-side sanitization code might be present in a func-

tion within a transformation data chain. We discuss this in Section 5.5.

Example. As a simple example, consider Figure 5.3, which represents one of the data

chains we found on the August Smart Lock device. Assuming that we previously iden-

tified sendToDevice as being a sendMessage function, we set { c} as the initial set

of variables possibly holding data to be sent, and determine the code locations where

c is set. As c is a function argument, we retrieve the sendMessage call site (Line

15), and bootstrap a backward program slicing from the call site, up to the function

unlock (Line 1). This is achieved by following the data-flow of the variable e back-

ward: sendToDevice uses the variable e, which is the result of a call to the func-

tion encrypt. Then, we continue the slice backward from the end of the function

encrypt up to its entry point, and back to the sendCommand function. Finally, we

2A dominance tree is a graph where each node’s children are those nodes it immediately dominates.

182

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

reach the entry point of this function, and continue the slice considering its caller (i.e.,

the function unlock).

Following the definition of function scopes above stated, this backward slice con-

tains the following function scopes: i) sendCommand: Line 15, ii) encrypt: Lines

from 6 to 9, iii) sendCommand: Lines 12 and 13 iv) unlock: Line 3, v) Command

constructor: (code not reported in this example), and vi) unlock: Lines 1 and 2. For

brevity, in the following we only consider the relevant function scopes: ii) encrypt,

iii) sendCommand, and vi) unlock. Their sets of live variables are: encrypt:

Lif = {b}, Lof = {enc}, sendCommand: Lif = {cmd}, Lof = {cmd}, and

unlock: Lif = {}, Lof = {cmd}.

Once we identify the function scopes in the slice, we run the app and compute

the entropy of the data assigned to each of their live variables. Then, we calculate

the amount of entropy introduced by each function scope and check whether its value

exceeds a threshold Tf .

The function unlock does not introduce any entropy, as the set Lif is empty. In

the cases where the set Lif is empty, we do not consider the function f as a candidate

data-transforming function, since it does not take any input.

For the function encrypt, the entropy of the data stored in b is 5.94, whereas the

entropy of the data returned in enc is 53.16. Since the entropy delta de is greater than

our threshold (de = 53.16/5.94 > 2.0), we consider encrypt as a data-transforming

183

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

1 public boolean unlock() { // unlock request
2 Command cmd = new Command(OP.UNLOCK);
3 return sendCommand(cmd);
4 }
5 /* Encrypts and return its parameters */
6 public byte[] encrypt (Command b){
7 byte[] enc;
8 // ...
9 return enc;

10 }
11
12 public boolean sendCommand (Command cmd){
13 // various checks on the command to send
14 byte[] e = encrypt(cmd);
15 return sendToDevice(e);
16 }
17 /* send a message */
18 public boolean sendToDevice(byte[] c) {/* ... */}

Figure 5.3: Example of a simple Transformation Data Chains found on the August Smart Lock.

function. Also, the function sendCommand introduces a low amount of entropy (de =

1.03), and, therefore, it is not considered a data-transforming function. Finally, as the

function encrypt dominates the function sendToDevice, encrypt is the only

top-chain function, and it is used as the only fuzzing trigger.

UI Stimulation. Our approach executes the same app multiple times, being consistent

across the different runs. This means that, ideally, we want the app to follow always the

same execution paths. To achieve this goal, we require the analyst to run the app once,

while DIANE records the generated UI inputs. Then, we automatically replay the same

inputs in the subsequent runs, by leveraging RERAN [44]. We do not explicitly handle

other sources non-determinism [25], but we found this does not significantly affect our

approach.

Fuzzing Intermediate Data-Transforming Functions. In principle, transformation

data chains might be arbitrary long. As DIANE’s goal is to stimulate the core functional-

184

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

ity of IoT devices, our approach ignores intermediate data-transforming functions (i.e.,

data-transforming functions dominated by a top-chain function) as they generate mes-

sages that would likely be discarded by the IoT device. However, as IoT devices might

contain bugs also in the procedures used to decode a received message, we provide

DIANE with the option to fuzz also all the intermediate data-transforming functions.

Likewise, DIANE provides an option to fuzz the sendMessage functions directly even

when dominated by top-chain functions. In Section 5.4.3, we empirically show that

fuzzing the sendMessage functions does not lead to the discovery of new bugs, while it

slows down the execution of our tool.

5.2.2 Fuzzing

After the first phase of our approach, we obtain a set of fuzzing triggers, which are

the inputs to our fuzzer.

Test Case Generation. For each fuzzing trigger, we generate a set of test cases by

mutating the parameters of the identified fuzzing triggers, which eventually modify the

data sent by a sendMessage function. We fuzz the different fuzzing triggers one at the

time, in a round-robin fashion. To mutate the values of their parameters, we use the

following strategies:

185

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

• String lengths: We change the length of strings in order to trigger buffer over-

flows and out-of-bound accesses. We generate random strings with different

lengths.

• Numerical values: We change the values of integer, double or float values to

cause integer overflows or out-of-bound accesses. We generate very large values,

negative values, and the zero value.

• Empty values: We provide empty values, in the attempt to cause misinterpreta-

tion, uninitialized variable vulnerabilities, and null pointer dereferences.

• Array lengths: We modify the content of arrays by removing or adding ele-

ments.

It is important to specify that we do not only fuzz primitive variables (e.g., int,

float), but we also fuzz objects (as explained in Section 5.3.2), by fuzzing their

member variables.

Identifying Crashes. As shown by a recent study [87], identifying all crashes of

network-based services of IoT devices without invasive physical access to the devices

is challenging. At the same time, getting invasive physical access to IoT devices

needs considerable engineering effort [7], since vendors usually prevent this type of

access [63, 96].

186

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

For these reasons, while fuzzing a device, DIANE automatically analyzes its re-

sponses to identify crashes. Specifically, DIANE first performs a normal run of the

app and monitor how the device responds during normal activity. Then, while fuzzing,

DIANE monitors the network traffic between the app and the device again, and consid-

ers an input to be potentially crash-inducing, if any one of the following conditions is

satisfied.

• Connection dropped. If the device abruptly ends an ongoing connection, we

consider it as an indication that something wrong happened to the device. Specif-

ically, for TCP connections, we look for cases where the app sent a FIN packet

and received no response (FIN + ACK), and then sent a sequence of two or more

SYN packets.

• HTTP Internal Server Error (500). Instances where the app and the device

communicate through HTTP, and the device returns an Internal Server Error [135]

(status code 500), are considered as a signal that the device has entered in a faulty

state.

• Irregular network traffic size. If the amount of data exchanged between the

app and the device overcomes a threshold Se, we save the current crash-inducing

input. Our intuition is that, when a device enters a faulty state (e.g., due to a crash)

it usually becomes temporarily unavailable for the app, thus drastically reducing

187

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

the amount of data exchanged. In our experiments, we empirically verified that

when the amount of exchanged data was less than 50% (compared to a regular

run), something unusual happened to the device. For this reason, we set Se to be

50%.

• Heartbeat Monitoring. While fuzzing a given device, we continuously ping it

and monitor its response time. We report any crash-inducing inputs causing the

response time to be above a certain threshold Tp. In our experiments, we set Tp

to 10 seconds, as we empirically verified that the average response time of an IoT

device falls within 1 second under normal conditions.

Finally, we use an additional Android smartphone, which we refer to as the watch-

dog device, to monitor the status of the IoT device from a neutral standpoint (i.e., we

do not instrument the companion app on this device). We run the companion app on

the watchdog device and automatically replay the previously recorded UI inputs to ex-

ercise the different IoT device functionality at regular intervals. A human analyst can

then observe whether the functionality exercised by the watchdog device (e.g., pressing

the light switch UI button) caused the desired effect on the IoT device (e.g., turning

the light on) or not. If an undesired effect is detected, it means that DIANE was able

to bring the analyzed device into an invalid state. This feature is not fully automated,

since it requires a human analyst to decide.

188

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

5.3 DIANE Implementation Details

In this Section, we provide technical details about DIANE’s different components.

We implemented DIANE in about 4,500 lines of Python code, following the high-level

architecture depicted in Figure 5.2. DIANE is implemented on top of pysoot 3, which

leverages Soot [124] to translate the companion app’s bytecode into an intermediate

representation. DIANE currently only handles Android applications.

5.3.1 Static Analysis

To find the initial set of sendMessage candidates within a companion app, we an-

alyze its internal representation. In particular, we select all those functions that ei-

ther contain calls (Soot intermediate-representation invoke instructions) to native

methods (having the native attribute) or calls to methods in the Android framework

known to implement network I/O operations (e.g., java.net.*, javax.net.*,

or android.net.*). By applying these rules, we obtain a list of functions that,

when invoked, potentially send network messages to the IoT device.

5.3.2 Dynamic Analysis

APK Instrumentation. To hook methods of the APK under analysis and to fuzz them,

we use Frida [40]. More precisely, each method is hooked and dynamically modified
3https://github.com/angr/pysoot/

189

https://github.com/angr/pysoot/

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

to include additional code. This injected additional code is used to enable fuzzing of

the method arguments and of the used class fields and to extract information necessary

for our analysis, such as the timestamp when the method is invoked and the contents of

its parameters.

Network Interception. DIANE intercepts the network traffic generated by the com-

panion app at runtime. DIANE supports the interception of traffic sent using both the

WiFi and Bluetooth interfaces. Note that our approach is independent of the specific

network medium and only requires to passively observe the communication channel

without accessing the content of the exchanged data. For traffic transmitted over WiFi,

DIANE leverages a router and the tool tcpdump to capture the packets sent from the

smartphone to the IoT device, filtering the IP addresses. Traffic transmitted using the

Bluetooth interface is instead captured using the Bluetooth HCI snoop Android debug-

ging functionality [12]. Unless otherwise specified, we use the term network activity to

refer both to WiFi and Bluetooth network traffic.

Fuzzing Objects. DIANE fuzzes both primitive variables (e.g., int, float) and

class instances. To do this we use pysoot to retrieve the class definition of the considered

class instances, and we fuzz each field whose type is either primitive or known (e.g.,

java.lang.String).

190

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

5.3.3 Hybrid Analysis

Fuzzing Trigger Identification Details. To implement the fuzzing triggers algorithm

described in Section 5.2.1, we implemented a static inter-function backward slicer on

top of pysoot. Theoretically, the backward slice of a given variable might traverse an

arbitrary number of functions. Therefore, to keep our analysis tractable, our backward

slicer algorithm adopts a conservative approach.

Specifically, when calculating the backward slice of a variable v, our backward

slicer traverses up to N consecutive function calls (we set N to five in our experiments),

and it over-approximates data dependencies when a function call is not followed. For

instance, if a function call takes v as one of its arguments, and the function call is not

followed, we assume that v is data-dependent on all the other arguments. Although

this approach might lead our static analysis phase to produce false positives, it does not

affect the performance of our tool, since, as explained in Section 5.2.1, we use dynamic

analysis to validate the results produced by static analysis.

To build the data-transforming function dominator trees, as explained in Section 5.2.1,

we first need to build the companion app call graph. To achieve this, we perform intra-

procedural type inference [97] to determine the possible dynamic types of the object on

which a method is called. When this fails, we over-approximate the possible targets as

all the subclasses of its static type.

191

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

Entropy Calculation Details. To find data-transforming functions, DIANE needs to

calculate the entropy of each variable v within the live sets Lif and Lof of a function

scope f . To achieve this, if v is a primitive variable (e.g., int), or a known type (i.e.,

String, Integer, Float, and Double), we convert the data it contains in its byte

representation and calculate the Shannon entropy of this sequence of bytes. Note that

the entropy is computed on the entire sequence of bytes, rather than the single bytes

considered separately.

Conversely, if v is a class object, we use pysoot to retrieve its class definition, and

we consider each field variable vc whose type is either primitive or known. For all these

field variables, we compute their entropy as specified above, and we add them to the

Lif set or to the Lof set, based on to which live set v belongs.

5.4 Experimental Evaluation

In this Section, we answer two research questions:

1. Is DIANE able to find both previously-known and previously-unknown vulnera-

bilities in IoT devices effectively?

2. Is DIANE needed to find vulnerabilities in IoT devices effectively, or can existing

(app-based or network-level) fuzzers achieve similar results?

192

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

Table 5.1: Summary of our dataset of IoT devices (* account required to operate the device).

DeviceID Type Vendor Model FirmwareVers. Android AppPackage Name App Vers. Online Account* Setup Time [Seconds]

1 Camera Wansview 720P X Series WiFi 00.20.01 wansview.p2pwificam.client 1.0.10 7 219

2 Camera Insteon HD Wifi Camera 2.2.200 com.insteon.insteon3 1.9.8 3 427

3 Smart Socket TP-Link HS110 1.2.5 com.tplink.kasa android 2.2.0.784 7 311

4 Camera FOSCAM FI9821P 1.5.3.16 com.foscam.foscam 2.1.8 3 406

5 Camera FOSCAM FI9831P 1.5.3.19 com.foscam.foscam 2.1.8 3 403

6 Smart Socket Belkin Wemo Smart Socket 2.0.0 com.belkin.wemoandroid 1.20 7 211

7 Bulb iDevices IDEV0002 1.9.4 com.idevicesllc.connected 1.6.95 7 274

8 Smart Socket iDevices IDEV0001 1.9.4 com.idevicesllc.connected 1.6.95 7 276

9 Camera Belkin NetCam Unknown com.belkin.android.androidbelkinnetcam 2.0.4 3 1,040

10 Bulb LIFX Z 2.76 com.lifx.lifx 3.9.0 3 313

11 Smart Lock August August Smart Lock 1.12.6 com.august.luna 8.3.13 3 213

To answer the first research question, we first evaluated DIANE precision in de-

tecting fuzzing triggers (Section 5.4.2) and then we used it to fuzz 11 different IoT

devices (Section 5.4.3). Our system found 11 bugs in 5 devices, including 9 zero-day

vulnerabilities, running, in all cases, for less than 10 hours (Section 5.4.8).

To answer the second research question, we first compared our tool with IoT-

Fuzzer [21] by running it on the 11 analyzed devices (Section 5.4.4). Our experi-

ment shows that DIANE outperformed IoTFuzzer in 9 devices, and performs as well as

IoTFuzzer for the remaining 2 devices. Then, we performed a larger-scale automated

study (Section 5.4.5) to measure how often companion apps perform app-side valida-

tion, which would limit the efficiency of approaches like IoTFuzzer. Our experiment

revealed that 51% of the analyzed apps contain, indeed, app-side sanitization. Finally,

we compared DIANE with existing network-level fuzzers (Section 5.4.6), and showed

that network-level fuzzers are unable to find bugs in the analyzed devices.

193

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

We conclude this Section by presenting a detailed case study about two zero-day

bugs DIANE found in one of the analyzed devices (Section 5.4.7).

5.4.1 Dataset & Environment Setup

To evaluate DIANE, we used popular real-world IoT devices of different types and

from different brands. Specifically, in October 2018 we searched for “smart home

devices” on Amazon and obtained the list of the top 30 devices. Among these, we

excluded 5 expensive devices (price higher than 200 USD), 1 device that does not com-

municate directly with the companion app (the communication passes through a Cloud

service), and other 13 devices because they require other appliances (e.g., a smart ceil-

ing fan controller).

Our dataset contains the remaining 11 devices, which are listed in Table 5.1. This

dataset encompasses devices of different types (cameras, smart sockets, bulbs, smart

locks). Note that the respective companion apps of these devices are quite complex

as they contain, on average, over 9 thousand classes, 56 thousand functions, and 766

thousand statements. The complexity of these apps is in line with the complexity of the

apps used by the related work [131], which contains the largest dataset of validated IoT

apps.

We installed the IoT devices in our laboratory, we deployed DIANE on an 8-core,

128GB RAM machine running Ubuntu 16.04, and we ran the Android companion apps

194

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

Table 5.2: Summary and features of our dataset of IoT companion apps. TP indicates a true positive
result, FP a false positive result, and NC a result we were not able to classify either as true positive
nor false positive. ? indicates that we could not verify whether an app applied data sanitization. The
last three columns indicate the complexity of the apps in terms of number of classes, functions, and
statements respectively.

Device Network Native Sanity No. Candidate No. No. Fuzzing No. No. No.

ID Protocol Code Checks sendMessage sendMessage Triggers Classes Functions Statements

1 UDP 3 3 4 (1 TP, 3 FP) 1 (1 TP) 7 (6 TP, 1 FP) 4,341 31,847 409,760

2 HTTP 3 3 12 (8TP, 4FP) 9 (6 TP, 3 FP) ? 6 (6 TP) 11,870 76,558 1,180,817

3 TCP + JSON 7 ? 6 (2 TP, 4 FP) 6 (2 TP, 4 FP) 3 (2 TP, 1 FP) 16,461 107,935 1,267,785

4 UDP 3 3 10 (2 TP, 7 FP, 1 NC) 2 (2 TP) 2 (2 TP) • 6,859 41,256 615,410

5 TCP 3 3 10 (2 TP, 7 FP, 1 NC) 2 (2 TP) 2 (2 TP) • 6,859 41,256 615,410

6 HTTP + SOAP 3 7 15 (3 TP, 12 FP) 6 (2 TP, 4 FP)? 9 (8 TP, 1 FP) 4,169 30,462 378,733

7 TCP 3 3 8 (2 TP, 6 FP) 3 (2 TP, 1 FP) 4 (3 TP, 1 NC) 8,418 52,013 813,444

8 TCP 3 3 8 (2 TP, 6 FP) 3 (2 TP, 1 FP) 4(3 TP, 1 NC) 8,418 52,013 813,444

9 TCP 3 ? 6 (3 TP, 3 FP) 1 (1 TP)? 1 (1 TP)• 6,010 42,358 467,670

10 UDP 3 ? 9 (1 TP, 8 FP) 3 (1 TP, 2 FP) 0 5,646 33,267 457,719

11 Bluetooth 3 3 9 (4 TP, 5 FP) 9 (4 TP, 5 FP) 16 (14 TP, 2 FP) 22,406 108,507 1,411,798

Total 10/11 7/11 97 (30 TP, 65 FP, 2 NC) 45 (25 TP, 20 FP) 54 (47 TP, 5 FP, 2 NC) 101,457 617,472 8,431,990

• fuzzing triggers coincide with sendMessage functions.

on a Google Pixel and a Google Nexus 5X running Android 8.0. The smartphones,

the IoT devices, and the machine running DIANE were connected to the same subnet,

allowing DIANE to capture the generated network traffic. To configure each device, we

manually performed its initial setup phase, such as registering an account on the device

and on the Android companion app.

195

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

Table 5.3: Summary of the bugs detected by DIANE, IoTFuzzer, and by existing network fuzzers
(BED, Sulley, uFuzz, and bss). No. Generated Alerts indicates the number of unique fuzzing triggers
for which DIANE automatically generated at least one alert. Time indicates the time required to find all
the reported bugs (and the number of fuzzing input generated to find the bugs). No. fuzzed functions
indicates the number of functions identified by IoTFuzzer for fuzzing.

DIANE IoTFuzzer Other Fuzzers

Device No. Generated No. Vuln. Time [hours] No. Fuzzed No. Time No. Bugs

ID Alerts Bugs Zero-day Type (No. Generated Inputs) Functions Bugs [hours] BED Sulley uFuzz bss

1 1 1 3 Unknown ≤ 0.5 (60,750) • 1 0 N/A N/A 0 N/A N/A

2 3 7 3 Buff overflow ≤ 0.5 (322) 5 2 0.98 0 0 N/A N/A

3 1 1 Unknown ≤ 1.2 (7,344) 1 1 4 0 0 N/A N/A

4 1 0 N/A N/A • 1 0 N/A N/A 0 N/A N/A

5 1 0 N/A N/A • 1 0 N/A 0 0 N/A N/A

6 4 1 Unknown ≤ 10 (34,680) 1 1 ≤ 10 0 0 0 N/A

7 3 0 N/A N/A N/A N/A N/A 0 0 N/A N/A

8 3 0 N/A N/A N/A N/A N/A 0 0 N/A N/A

9 0 0 N/A N/A 3 0 N/A 0 0 0 N/A

10 1 0 N/A N/A N/A N/A N/A N/A 0 N/A N/A

11 0 † 1 3 Unknown 2.2 (3,960) N/A N/A N/A N/A N/A N/A 0

•We manually instrumented IoTFuzzer to identify a valid send function.

† Vulnerability discovered through the watchdog device.

5.4.2 Fuzzing Trigger Identification

Table 5.2 shows the results of each step of DIANE’s fuzzing triggers identification

phase: For each IoT device, we report the protocols in use to communicate with the

companion app, whether or not the app contains native code, if it sanitizes user in-

puts, the number of candidate sendMessage functions found by DIANE, the number

of validated sendMessage functions, and the number of fuzzing triggers. For each in-

termediate result, we calculated the number of true positives and false positives, and

investigated false negatives.

196

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

Since there is no available ground truth, we validated our ability to identify sendMes-

sage functions and fuzzing triggers by manually reversing (both statically and dynami-

cally) the Android companion apps in our dataset. Specifically, an expert analyzed each

app for an average of five hours.

Reverse engineering of real-world apps is known to be difficult. Therefore, while

we did our best to fully comprehend the dynamics of these apps, in a few cases we

could not verify our results completely, as indicated in the following Sections. We also

acknowledge that this manual evaluation cannot completely exclude the presence of

false negatives.

To measured DIANE’s ability to find sendMessage functions precisely, we manu-

ally analyzed the sendMessage functions returned by the first two steps of our analysis.

Specifically, we classified each function returned by the sendMessage candidates iden-

tification step (Step 1 in Section 5.2.1) and by the sendMessage function validation step

(Step 2 in Section 5.2.1) as either true positive or false positive (TP and FP in the fifth

and sixth columns of Table 5.2). To perform this classification, we hooked each of these

functions and manually exercised the IoT device’s functionality through its companion

app, while monitoring the network traffic. We considered a candidate sendMessage

function a true positive if: i) We registered network traffic when the companion app

invoked the sendMessage function, and ii) the code and semantic of the function indi-

cated network functionality. If either of these two conditions were false, we considered

197

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

the sendMessage function a false positive. There were cases where the app was heav-

ily obfuscated, and we could not establish if the considered sendMessage function was

indeed sending data (NC in Table 5.2).

As shown in Table 5.2, DIANE was able to remove 45 false positive results during

its sendMessage function validation step, . For Device IDs 2, 6, and 9 (indicated with

?), one might think that we lost some true positives during the validation step. However,

this was not the case. After manual verification (using both static and dynamic analy-

ses), we discovered that the missing true positives were just wrappers of other validated

true positives. We also looked for false negatives, that is, sendMessage functions that

were not identified as such. To the best of our ability, we found no such false negatives.

Overall, though we registered some false positives (20 in total), we always identified

correctly sendMessage functions (i.e., no false negatives). We investigated the false

positives and we found that they were due to border functions containing calls to native

methods, which were called within (or right before) the correct sendMessage functions.

As such, their execution times were close to the actual sendMessage functions, causing

our sendMessage validation step to label them as valid sendMessage functions. Also,

it is important to say that false positive results do not affect the effectiveness of DIANE

(i.e., the number of bugs found), rather its efficiency (i.e., the time spent to find those

bugs). In fact, considering a non-sendMessage function as a sendMessage would only

198

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

result in identifying additional, wrong fuzzing triggers that would not generate any

network traffic when fuzzed, thus not affecting the IoT device.

For each true positive sendMessage function, we verified that DIANE correctly iden-

tified the top-chain functions (i.e., fuzzing triggers). Fuzzing triggers for Device IDs

4, 5 and 9 (marked with •) coincided with the sendMessage functions. This happens

in apps that either do not have data-transforming functions, or where the functions that

transform the data also embed the send functionality. Consequently, these functions are

both sendMessage and top-chain functions.

For three apps (Device IDs 3, 9 and 10), we could not trace the data-flow from the

identified sendMessage functions back up to the UI elements. This was due to impre-

cisions of the employed reverse engineering tools. Therefore, we could not establish

whether they performed app-side data sanitization.

We also investigated false positives and negatives in the identified fuzzing triggers.

Overall, our transformation data chain identification algorithm generated 5 false pos-

itives. In 2 cases, our backward slicer could not find any callers of a given function,

and, therefore, our algorithm ended and considered the last detected data-transforming

function f a fuzzing trigger. After manual verification, we found that the correct

fuzzing trigger, in both cases, was a caller of function f . Although f is a valid data-

transforming function, DIANE cannot assure that it is a top-chain function, as there

might be another data-transforming function calling f that dominates f . The remain-

199

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

ing 3 false positives were due to the fact that these functions introduced an entropy

higher than our threshold, though they were not data-transforming functions. How-

ever, we maintained our threshold to 2 as this value is indicated as optimal by related

work [132]. As we explained before, these false positives do not influence the effec-

tiveness of DIANE, but only its efficiency.

Finally, we evaluated the false negatives generated by DIANE. To the best of our

ability, we did not encounter any false negative while manually reversing the apps.

5.4.3 Vulnerability Finding

Finally, we fuzzed the obtained fuzzing triggers, and verified the alerts produced by

our tool. Table 5.3 shows the results of our fuzzing. Note that, while DIANE can also

use sendMessage functions as entry points for fuzzing, it identified all the detected bugs

only when leveraging fuzzing triggers. We discuss the human effort required to verify

the alerts produced by DIANE in Section 5.4.9.

We validated our findings as follows. The seven bugs for Device ID 2 were con-

firmed by analyzing both the network traffic and the camera firmware. Through the

analysis of the firmware, we were able to verify our findings and craft a proof-of-work

exploit that stalls the device for an arbitrary amount of time. We reported these bugs to

the manufacturer, who confirmed our findings.

200

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

As for Device ID 1, after finding the candidate crash input, we verified it, through

the app, by observing how the device behaved. We noticed that, after sending the

crafted input, the device did not respond anymore, unless it was rebooted. Also, after

fuzzing it for 24 hours the device entered a malfunctioning state, and we were unable

to correctly restore it, even after multiple factory resets. We then purchased another

camera of the same model, and the same result was obtained after 24 hours. We are

still investigating to find whether some crash-inducing inputs we provided also cause

irreparable damage to the device.

When validating the crash reports for the Device ID 3, we noticed that, after sending

the crash-inducing input, the TCP connection was dropped, and the device response

time significantly increased. We found that this bug, as well as the bug affecting the

Device ID 6, were known vulnerabilities [21].

For Device ID 11 (a popular smart door lock), we noticed that after around two

hours of fuzzing the device became unreachable for the watchdog device. Even more

interestingly, the device then started to make an intermittent noise, which we realized

being “SOS” encoded in morse code4. We then reset the door lock, and we observed that

it started to show erratic behavior. For example, we noticed that it was not possible to

control it through two different Android phones anymore: If the lock status was shown

as “online” on one companion app, it would be “unreachable” on the same companion

4Audio recording: https://drive.google.com/file/d/1j9ydwO9CWuC3d-
HxcMDeZga6m3sSrg5l/view

201

https://drive.google.com/file/d/1j9ydwO9CWuC3d-HxcMDeZga6m3sSrg5l/view
https://drive.google.com/file/d/1j9ydwO9CWuC3d-HxcMDeZga6m3sSrg5l/view

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

app on another phone. We are still working with the vendor to find the root cause of the

problem.

We reported our findings to the appropriate manufacturers and we are in contact

with them to disclose all the details.

5.4.4 DIANE vs. IoTFuzzer

To compare our approach to IoTFuzzer [21], we contacted the authors and obtained

their tool. We also attempted to purchase the same devices used to evaluate IoTFuzzer,

but we could only obtain Device 3 and Device 6, as the remaining ones are only avail-

able in China.

IoTFuzzer required manual intervention to be adapted to different devices and com-

panion apps. In particular, we had to i) limit the scope of the analysis (i.e., number of

hooked functions) to a subset of Java packages present in the Android apps—to keep

the analysis tractable and avoid crashes—and ii) manually specify any encryption func-

tions present in the app. After this manual configuration step, we were able to replicate

the results presented in the original paper for the devices we were able to obtain (Device

3 and Device 6). Additionally, IoTFuzzer is based on TaintDroid, whose latest release

supports up to Android 4.3 (2012). For this reason, we were not able to analyze Device

10 and Device 11, as their companion apps require newer Android SDK versions.

202

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

Our results are reported in Table 5.3. IoTFuzzer crashed Device 3 and 6 (the two

devices used in the original paper) and Device 2, but failed to find any bugs for the

other 8 devices.

For Device 2, IoTFuzzer identified 5 functions to fuzz. We manually analyzed

these functions and found that three of them were false positives, as they were used to

save user information on the Android phone. To confirm our findings, we fuzzed these

functions and observed that none of them generated network traffic.

Then, we proceeded to fuzz the two remaining functions HouseExtProperty

and changeCameraUsernamePassword. While fuzzing the former function for

an hour, we discovered that the generated messages were directed to the vendor’s cloud,

rather than the actual device, therefore not producing any meaningful fuzzing input for

the IoT device.

The changeCameraUsernamePassword function is, instead, used to change

the credentials on the IoT device. We fuzzed this function for 24 hours, and IoTFuzzer

rediscovered 2 of the 7 bugs that DIANE found on this device.

To understand better why IoTFuzzer missed some of the bugs we found, we exam-

ined changeCameraUsernamePassword (shown in Figure 5.4). This function

calls the functions cam.changeUsername and cam.changePassword to gen-

erate the requests to change the username and password, respectively (the first argument

of these functions represents the current username of the camera). Also, the variable

203

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

cam is an internal structure that the app uses to store the details of the camera (e.g.,

the camera model), and its content is not directly influenced by the data received from

the app’s UI. On the other hand, both newUsr and newPwd contain user data, which

is passed through the app’s UI. As IoTFuzzer fuzzes only the function arguments that

contain user data (when a function is invoked), it fuzzes the second and third function

arguments, but it does not fuzz the first.

Unfortunately, as we explain in detail in Section 5.4.7, this camera contains a bug

that can be exploited if the request generated by the companion app contains a username

whose length is larger than a particular buffer size. However, by fuzzing the second

two arguments of changeCameraUsernamePassword IoTFuzzer only mutate

the second parameter of cam.changeUsername and cam.changePassword—

newUsr and newPwd respectively—and it does not mutate their first parameter (i.e.,

cam.user), which would lead to the discovery of an additional bug. This case high-

lights a limitation of IoTFuzzer’s approach, as it shows that assuming that all the data

being sent to the device comes directly from the app’s UI is ineffective to find bugs in an

IoT device. On the other hand, our bottom-up approach, which bootstraps its analysis

from sendMessage functions (see Section 5.2), is agnostic with respect to the sources

of input, and, therefore, is more generic.

In addition, changeCameraUsernamePassword allows one to modify the

credentials only for specific camera models (Line 2, cam.checkCameraModel).

204

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

1 boolean changeCameraUsernamePassword(Camera cam, String newUsr, String newPwd) {
2 if(cam.checkCameraModel()) {
3 if(cam.user.compareTo(newUsr) != 0)
4 cam.changeUsername(cam.user, newUsr);
5 if(cam.pwd.compareTo(newPwd) != 0)
6 cam.changePassword(cam.user, newPwd);
7 }
8 //...
9 }

Figure 5.4: Fuzzing function found by IoTFuzzer for the Insteon camera (Device ID 2). We report
only the relevant code for space reasons.

This means that IoTFuzzer cannot effectively fuzz other camera models. By identifying

a fuzzing trigger deeper in the control flow, DIANE, instead, bypasses this check and is

effective independently from the device version.

For Device IDs 7 and 8, IoTFuzzer caused the app to crash immediately due to the

number of hooked functions. We narrowed the analysis to only the package containing

the code to interact with the device, but the app would crash regardless. Thus, we could

not run IoTFuzzer on these devices.

For Device ID 9, IoTFuzzer identified 3 functions to fuzz. However, we found these

functions to be false positives, as they were used to log user data on the smartphone.

For Devices IDs 1, 4, and 5 (marked with • in Table 5.3) IoTFuzzer failed to identify

any functions to fuzz. The reason is that to find a function to fuzz, IoTFuzzer has to

first find a data flow between a UI element of the app and the Android’s socket send

function. However, in these devices the “send” functionality is implemented in native

code (i.e., these devices do not rely on the Android’s send function). As IoTFuzzer

cannot identify send functions in native code, it failed to identify what UI events would

205

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

1 void changeCredentials(String newUsr, String newPwd) {
2 if(this.confirm_credentials()) {
3 if(!this.get_user().equals(newUsr) && !this.get_pwd().equals(newPwd))
4 this.changeUserAndPwd(newUser, newPwd);
5 //...
6 }
7 }

Figure 5.5: Fuzzing function found by IoTFuzzer for the Foscam cameras companion app (Device
IDs 4 and 5).

eventually generate network traffic, and, therefore, it did not generate any valid fuzzing

inputs. DIANE overcomes this limitation by using dynamic analysis, and find the border

functions that generate network traffic, as explained in Section 5.2.1.

To help IoTFuzzer and have a direct comparison with our tool, we hard-coded the

send functions found by DIANE in IoTFuzzer, and re-ran the analysis for these de-

vices. For Device IDs 4 and 5, IoTFuzzer identified one candidate function to fuzz,

which, similarly to Device ID 2, is used by the app to change the device’s creden-

tials. This function is depicted in Figure 5.5, and it implements a check (through

confirm_credentials) that asks the user to provide their credentials in order

to proceed. As a result, fuzzing changeCredentials did not produce any mean-

ingful input to the camera, as the check would constantly fail. Instead, DIANE identified

as a fuzzing trigger the function changeUserAndPwd, which is not affected by any

checks, and effectively sends commands to the camera when fuzzed. These cases high-

light another limitation of IoTFuzzer’s approach, as they show that fuzzing the first

function in the app’s control flow that handles user-provided data is ineffective.

206

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

For Device ID 1, IoTFuzzer identified a function called setUser, which sends

the user’s login information to the device. In this case, this function is guarded by a

check that forbids the user’s password to contain some special characters (e.g., “&”).

We fuzzed this function for 24 hours and we did not register any anomaly in the device.

Also in this case, DIANE selected a function deeper in the control flow of the app, after

any client-side checks. This was necessary to successfully discover a (zero-day) bug.

Overall, DIANE performed as well as IoTFuzzer only in two cases (Device IDs 3

and 6), and it outperformed IoTFuzzer in all the other cases—either because IoTFuzzer

was unable to identify any meaningful send functions, or because it did not produce

any crash-inducting input.

This evaluation highlights the importance of carefully selecting the right function to

fuzz within the companion app, and that app-side sanitization checks hinder the efficacy

of a fuzzing campaign. This issue is exacerbated by the frequency in which app-side

sanitization is present in companion apps. For instance (as shown in Table 5.2), in

our dataset we found that at least 7 out of 11 apps contain sanity checks. We further

measure this aspect in Section 5.4.5.

5.4.5 App-side Sanitization and Fuzzing Triggers

App-side Sanitization. To evaluate how common app-side sanitization code is in com-

panion apps, we first manually reverse-engineered the 11 companion apps of the IoT

207

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

devices in our dataset. As shown in the Sanity Checks column of Table 5.2, at least 7

out of 11 apps contain sanity checks.

As an additional evaluation of this aspect, we performed a large-scale study on the

presence of app-side sanitization code in companion apps. For this experiment, we

used 2,081 apps, which we gathered from related work [131]. This dataset is ideal for

our evaluation as it specifically contains Android companion apps of IoT and smart

home devices, which have been collected from the Google Play Store and manually

inspected by the authors of the related work. To the best of our knowledge, this is

the largest dataset of validated IoT companion apps. Since we did not have access to

all the physical devices that these apps interact with, we could not run DIANE against

them, and, therefore, we implemented a fully-static automated approach, suitable for a

large-scale study.

Specifically, given a companion app, we identified its sendMessage functions by

locating functions that contained I/O operations (as detailed in Section 5.3.1). We were

able to identify sendMessage functions for 1,304 of the apps (˜63%). For the remaining

apps, we were not able to statically identify any network-related operations, as we could

not find, for instance, a socket send operation. Then, we performed an inter-procedural

backward slice from every argument of each identified sendMessage function, and con-

sidered the instructions in each slice. Finally, we counted the comparisons against

constant data (e.g., using a string comparison in a if statement) in these slices.

208

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

In this experiment, we found that 663 (˜51%) companion apps implement sanitiza-

tion of the data being sent, and that, on average, the variables handled by a sendMessage

function are affected by 7 checks across the companion app. To validate these results,

we randomly selected 100 sendMessage functions and found 85 to be true positives,

14 to be false positives (these functions were sending messages to another Android

thread), and for 1 of them we could not determine its functionality, as it was heavily

obfuscated. Also, we randomly sampled 30 functions that we detected were applying

input sanitization code, and found 29 to be true positives: the companion app applied

checks on the user data.

These results show how app-side sanitization code is common in companion apps.

Note that, this experiment is only an approximation of our approach, which requires the

physical devices to be fully effective. Therefore, these results do not aim to evaluate

our approach, rather they serve as an indication of the presence of input validation code

in mobile apps. Our results are in line with a recently published study [149].

Fuzzing Triggers. We also evaluated how prevalent fuzzing triggers are in Android

companion apps. As DIANE relies on dynamic analysis to find fuzzing triggers, we

replaced the parts of our approach that leverage dynamic analysis with symbolic execu-

tion. We used the Java support provided by the angr [115] tool to symbolically execute

the app’s functions in a slice (see Algorithm 4), so to calculate the Shannon entropy.

In particular, we concretize the input of a function (i.e., its live variables) with known

209

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

values, symbolically execute the function, and observe the values in the output (i.e., its

live variables when the function returns). Then, we replicate our approach explained

in Section 5.2.1, and calculate the difference of entropy introduced by each function to

identify the data-transforming functions.

We sampled 100 apps from the 2,081 aforementioned apps, ran our analysis, and

manually verified the results. For 37 apps, our analysis found fuzzing triggers, and for

the remaining 63, it did not. We investigated our results and found that our analysis

correctly identified a fuzzing trigger for 25 of the 37 apps, and it produced false posi-

tives in the remaining 12 cases. These false positives were due to imprecisions in our

inter-procedural backward slicer (i.e., our static analysis could not find the callers of a

given function).

On the other hand, in 63 apps our analysis did not find any fuzzing trigger because

of imprecisions of the symbolic execution. In fact, to keep the analysis tractable, we

symbolically execute every function up to 10 minutes and follow up to 2 consecutive

function calls (we drop the collected symbolic constraints when a function call is not

followed). As such, when the analysis fails to calculate the added entropy of a given

function, we stop the analysis.

Overall, we found fuzzing triggers for 25% of the analyzed apps. While this number

sufficiently demonstrates that such sweet spots are, indeed, present in many apps, we

highlight that, in our analysis, this is a lower bound. In fact, our attempt to emulate our

210

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

approach using symbolic execution introduces imprecisions that would not occur when

using DIANE together with the real devices. Therefore, we expect this number to be

even higher in practice. This further emphasizes the need for a system that can identify

fuzzing triggers that are located past client-side checks in the companion apps.

5.4.6 DIANE vs. Network-Level Fuzzing

We also compared DIANE to well-known network fuzzers: BED [66], Sulley [13],

uFuzz [122] (UPnP endpoints), and bss [112] (Bluetooth fuzzer). Table 5.3 shows the

results of the comparison. Note that the labels N/A indicate that the corresponding

network fuzzer does not handle the network protocols employed by the corresponding

IoT device.

We configured BED and Sulley as indicated by previous work [21], and the re-

maining tools as suggested by their related web pages. We ran each tool for 24 hours.

However, uFuzz finished its fuzzing cycle before the allocated time, and bss was not

able to generate input for Device ID 11, as the device does not accept connections

outside the companion app.

Overall, no bugs were found by any of these network fuzzing tools. The reason why

no network fuzzers triggered any crash is that these fuzzers are general-purpose [98,

138], and they fail to trigger deeper code paths in the devices’ firmware. For instance,

211

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

1 public static String httpRequest(String req, ...){
2 // perform the requested HTTP request
3 }
4 /* Camera class */
5 private Result sendCommand(String cmd, TreeMap t){
6 String fmt = "http://%s/CGIProxy.fcgi?cmd=%s:%s";
7 toSend = String.format(fmt,CAMERA_ENDPOINT, cmd);
8 Iterator it = t.keySet().iterator();
9 while(it.hasNext()) {

10 String key = (String)it.next();
11 String val = (String)t.get(key);
12 toSend += "&" + key + "=" + this.encodeUrlParam(val);
13 }
14 String encUser = this.encodeUrl(this.user);
15 String encPwd = this.encodeUrl(this.passwd);
16 fmt = "&usr=%s&pwd=%s"
17 toSend += String.format(fmt, encUser, encPwd);
18 HttpUtil.httpRequest(toSend,"GET",null,10,10);
19 }
20
21 public boolean changePassword(String user, String newPwd) {
22 TreeMap t = new TreeMap();
23 v0.put("usrName", user);
24 v0.put("newPwd", newPwd);
25 res = this.sendCommand("changePwd", t).resCode;
26 return res != ResCode.SUCCESS ? false : true;
27 }
28
29 boolean changeCameraUsernamePassword(Camera cam, String newUsr, String newPwd) {

/*...*/ }

Figure 5.6: Snippet of code for the Insteon Camera app.

BED only fuzzes HTTP headers without considering the syntax or the semantics of

HTTP payloads.

5.4.7 Case Study: Insteon HD Wifi Camera

In this Section, we present a case study regarding two bugs that DIANE found in the

Insteon Camera (Device ID 2).

Among the functionality offered by the app, a user can change their credentials

(username and password). Figure 5.6 depicts a simplified version of the app’s code that

accomplishes this task (we omit the code of the function changeCameraUsername

212

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

Password as it is already shown in Figure 5.4). In particular, when the user wants to

change their password, the companion app invokes the function changeCameraUser

namePassword (Line 29). As explained in Section 5.4.4, this function first checks

that the camera belongs to a certain camera family, and if so, the app invokes the func-

tion changePassword (Line 21). This function creates a TreeMap structure con-

taining couples “key:values,” which will be placed in the request generated by the app.

Then, changePassword invokes the sendCommand function (Line 5), which is

a helper function used to send commands to the camera. This function prepares the

request by using the TreeMap, and it eventually calls httpRequest (Line 1) to send

the request to the device.

For this particular device, we could gather the firmware running on the camera (by

sniffing the wireless network during the initial firmware update). Figure 5.7 shows a

simplified version of the firmware function used to copy the values of parameters from

a given URI. This function acts as an unsafe strcpy: it takes as input a destina-

tion buffer (allocated by the caller function) and copies the value of a pair “key:value”

present in a given URI. This function is called 789 times within the Insteon firmware,

and, to the best of our knowledge, for 9 of them, we can trigger a buffer overflow. In

particular, when a user wants to change the camera password, the firmware allocates

two buffers on the stack, and it uses this function to copy the username and new pass-

word values from the URI into the allocated buffers (of 88 and 64 bytes respectively).

213

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

1 int key_strcpy(char *dst, char *URI, char *key){
2 int len = 0;
3 char* val = get_ptr_val(URI, key, &len);
4 strncpy(dst, val, len);
5 return 0 ;
6 }

Figure 5.7: Simplified snippet of code from Insteon firmware.

As a result, if we provide two values for username and password large enough, we can

trigger two buffer overflows.

By looking at the code in Figure 5.6 and Figure 5.4, we can see that fuzzing the

function encodeUrl (Lines 12,14, and 15 in Figure 5.6) allows us to i) skip any

app-side validation (Line 2 in Figure 5.4), and ii) trigger both bugs discovered by IoT-

Fuzzer (as shown in Section 5.4.4) and two additional bugs due to a long username and

password.

DIANE identified 9 different sendMessage functions (6 true positives), and 6 fuzzing

triggers (6 true positives) for the Insteon Camera companion app. Among these, DIANE

automatically identified the function httpRequest as a sendMessage function, and

the function encodeUrl as a fuzzing trigger. When DIANE fuzzed encodeUrl,

DIANE immediately generated an alert.

Finally, note that the sendCommand represents another valid fuzzing trigger for

httpRequest, as it modifies the command being sent. Indeed, DIANE correctly

identified sendCommand as a further fuzzing trigger.

214

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

5.4.8 Runtime Performance

We assessed the runtime performance of our tool by measuring the execution time

required by the fuzzing triggers identification phase. In our experiments, we setup

DIANE to run the fuzzing phase for 24 hours. First, we measured the entire execution

time required, on average, for DIANE to analyze an app and identify fuzzing triggers.

DIANE analyzes a given app in slightly less than 150 minutes on average. Figure 5.8

shows the average and standard deviation of the execution time required for each phase

of our analysis process. As shown in Figure 5.8, the execution time of DIANE has

a high standard deviation. This is due to the following implementation detail: Frida,

which we leverage to hook Android APIs and methods at runtime, sometimes fails,

causing the running app to crash. This requires automatically restarting the hooking

procedure, randomly slowing down DIANE.

5.4.9 Quantifying Required Human Effort

We evaluated the human effort required to use DIANE. In general, DIANE scales

linearly with the number of analyzed devices, as it requires the analyst to perform the

same steps for each new analyzed device.

DIANE requires human intervention to setup a new IoT device. During this phase,

an analyst has to install the IoT device, which involves installing the companion app,

configure the device, and, in some cases, register an online account. In addition, during

215

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

this phase, DIANE requires the analyst to run the app and test the basic functionality

of the IoT device, so that our tool can record the generated UI interactions (see Sec-

tion 5.2). We measured the time we spent to setup each device, as reported in Table 5.1.

On average, we spent 6 minutes and 12 seconds to setup a new IoT device, of which 41

seconds were spent to interact with the device. Note that, an analyst has to take these

steps only once per device.

Human effort is also required if the analyst desires to monitor the state of the watch-

dog device during fuzzing (recall Section 5.2.2). The watchdog device is optional and

useful if the analyst wants to detect semantic issues. In this case, the analyst has to

check whether the functionality automatically exercised by the watchdog device results

in an undesired effect in the IoT device due to our fuzzer triggering a vulnerability (e.g.,

unauthenticated requests suddenly open a door lock). The frequency of these manual

checks depends on the analyst, as they might want to monitor the watchdog device at

regular intervals for the whole duration of the fuzzing campaign, or only at the end of

it. In our fuzzing campaign we checked the watchdog device approximately every two

hours. In our experiments, we needed the watchdog device only to detect the issue for

Device ID 11, as explained in Section 5.4.3. The other 10 bugs were automatically

detected by DIANE by monitoring the network traffic, as explained in Section 5.2.2.

When a bug is detected, DIANE generates an alert. In this case, an analyst may

want to manually reproduce and verify the bug triggering the alert. DIANE allows this

216

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

S
SM FTAll

0

100

200

E
xe

c.
Ti

m
e

(m
in

)

Figure 5.8: Average and standard deviation of the execution time of the phases that DIANE performs
(S = Setup, SM = sendMessage functions Identification, FT = Fuzzing Trigger Identification).

manual verification, since it produces as output the input triggering the detected bug.

With this information in hand, the analyst can use DIANE to send the crashing input to

the analyzed IoT device. Then, the analyst can manually check the device functionality

to assess if it misbehaves after receiving the crashing input (e.g., the device reboots or

does not reply to further requests). In our evaluation, we needed about 6 minutes, on

average, to follow this procedure and verify each alert produced by DIANE.

5.5 Limitations and Future Work

While we addressed the major challenges for performing black-box fuzzing of IoT

devices, our overall approach and the implementation of DIANE still have some limita-

tions.

Approach. We currently cannot bypass app-side sanity checks when they are imple-

mented in native code, in a data-transforming function or directly in a sendMessage

function. Though we acknowledge that such checks could be present in any of these

217

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

classes of code, we manually verified that none of the apps in our dataset contain sanity

checks in any of these categories. In fact, as shown by previous work [1], native code

is typically not used to implement the main application’s logic, but it is used, instead,

in library helper functions Also, note that, differently from previous work, this does not

mean that DIANE cannot handle native code at all. In fact, even if the sendMessage

function is implemented natively, DIANE can identify it and fuzz its fuzzing triggers.

However, if sanity checks are present in any of the aforementioned classes of code, the

fuzzing is less effective.

As any approach based on dynamic analysis, DIANE suffers from limited code cov-

erage, i.e., it cannot identify fuzzing triggers that are not executed by the app. To

mitigate this limitation, we manually stimulate the apps to trigger most of the available

functionality, and we perform our analysis on real smartphones.

Implementation. The current implementation of DIANE cannot fuzz nested Java ob-

jects. We plan to address this in future work, as it only requires engineering effort.

Future work. DIANE could be enhanced to automatically discover semantic vulnera-

bilities (e.g., a smart lock unlocks a door instead of locking it). Currently, this feature

is semi-automatic as it requires the analyst to check and interact with the watchdog

device.

218

Chapter 5. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices

Algorithm 4 Fuzzing Trigger Identification.
1: procedure GETTOPCHAIN(sendMessage)
2: topChain← {}
3: for (v, cl) ∈ getArgAndObjLocs(sendMessage) do
4: to hook ← {}
5: dtf ← []
6: bsl← getBackwardSlice(v, cl)
7: for (f, instf) ∈ getFunctionScopes(bsl) do
8: (Lif , Lof)← livenessAnalysis(instf)
9: to hook ← to hook ∪ {f, (Lif , Lof)}

10: end for
11: for {f, (ELif , Elof)} ∈ getEntropies(to hook) do
12: de ← maxVarEntropy(Elof)/minVarEntropy(Elif)
13: appendIfDataTransforming(dtf, de, {f, Lif})
14: end for
15: trees← getDominatorTrees(dtf)
16: candidates← dtf ∪ {sendmessage}
17: for fc ∈ candidates do
18: if not isDominated(fc, trees) then
19: topChain← topChain ∪ {fc}
20: end if
21: end for
22: end for
23: return topChain
24: end procedure
25: procedure FUZZINGTRIGGERIDENTIFICATION(CompanionApp)
26: fuzzingTriggers← {}
27: borderMethods← getBorderMethods(CompanionApp)
28: for s ∈ dynamicFilter(borderMethods) do
29: fuzzingTriggers← fuzzingTriggers ∪ getTopChain(s)
30: end for
31: return fuzzingTriggers
32: end procedure

219

Chapter 6

Related Work

As studied by Alrawi et al. [3], the security of IoT devices depends on the security

of four different layers: (1) the network protocol (2) the device, (3) the companion

application, and (4) the cloud endpoint.

Network Protocol Layer. The security of the communications involving an IoT device

depends on the security of the employed network protocols. Most IoT systems use a

combination of mainly four types of communication protocols: IP [99], ZigBee [37],

Z-Wave [2], and Low Energy Bluetooth [43] (or BLE).

Unfortunately, the literature contains a plethora of work showing the weaknesses of

these protocols. For instance, Vidgren et al. [125] illustrated how an adversary can take

control of IoT devices that rely on the Standard Security level on the ZigBee protocol.

Similarly, Ryan [109] showed how an attacker can recover a session key, by exploiting

a flaw in the key-exchange protocol in Bluetooth.

220

Chapter 6. Related Work

Finally, the network protocols class also considers the security of application layers

protocols used by IoT devices (e.g., UPnP, SSDP, HTTP, and NTP), which, unfortu-

nately, have been found vulnerable to several attacks [11, 72, 110, 113].

Device Layer. This layer considers the security of the hardware and software compo-

nents of the IoT device.

As shown by recent work [14, 142], an attacker can take advantage of physical ac-

cess to an IoT device to cause significant damage, such as obtaining a dump of its

memory, modify boot parameters, and extract sensitive information (e.g., root pass-

words) [23, 78]. In particular, Zhou et al. [151] recently discovered that if certain

sensitive hardware information, such as the identifier to uniquely register an IoT de-

vice to the vendor, is disclosed, an attacker could successfully take control over the

device remotely. Remote attacks are the most insidious, as they allow the attackers to

compromise the IoT device without needing physical access to it.

The literature contains a plethora of work to detect vulnerabilities and secure firmware

for IoT devices. Dynamic taint analysis [111] (DTA) is a well-known technique for

vulnerability detection. However, reduction in performance is one of the main rea-

sons for not integrating DTA into production devices. Techniques based on function

summaries [152], instruction coalescing [100], storage optimization [70], and multi-

threading [84] were developed to improve the performance of DTA techniques. How-

ever, resource constraints on embedded devices render traditional DTA techniques in-

221

Chapter 6. Related Work

feasible [148]. Although techniques such as FirmaDyne [27], SURROGATES [74],

and Avatar [145] address this by emulation, custom hardware, and hardware proxying,

they either pose strict assumption on the firmware or rely on the presence of debugging

ports (e.g., JTAG), which are usually disabled.

Driller [120] uses bounded symbolic execution to generate deep inputs. Dowser [52]

and offset-aware fuzzing [104] use a combination of taint analysis and symbolic exe-

cution to generate overflow-inducing inputs. VUzzer [103] and GAFuzzing [82] use

genetic algorithms to generate high coverage inputs. However, gray-box fuzzing tech-

niques [71, 82, 103] require access to the runtime state of the target program making

them unsuitable for embedded devices. DIFUZE [26] uses the interface information

extracted using static analysis for fuzzing mobile kernel drivers. However, their tech-

niques are customized to kernel drivers and do not apply to arbitrary binary programs.

RPFuzzer [133] provides a fuzzing framework for routers. However, it requires mon-

itoring of the running process, which is not always possible for proprietary routers.

IoTFuzzer [21] performs black-box fuzz testing of various IoT devices through the cor-

responding mobile app. However, it obeys to the app’s code constraints on the user

input to generate fuzzing inputs (user’s data sanitization). FIRM-AFL [150] and Firm-

Fuzz [119] fuzz programs on IoT devices by emulating the corresponding firmware.

However, a faithful emulation of firmware is a hard problem. Furthermore, similar to

the other fuzzing techniques they suffer from effective input generation.

222

Chapter 6. Related Work

Most of the static analysis-based techniques focus on specific vulnerability types,

such as buffer overflows [77, 92], integer overflows [22, 129], use-after-free [39], au-

thentication bypass [115] and v-table escapes [35]. Few techniques exist to detect

general taint style vulnerabilities [31]. However, they suffer from scalability. Unlike

KARONTE, none of these techniques handle vulnerabilities that require modeling in-

teraction between multiple binaries. Costin et al. [28] provide a framework that mixes

static analysis and emulation to analyze embedded web interfaces. However, their tech-

nique is not generic, does not detect previously-unknown memory-corruption vulnera-

bilities, and relies on various heuristics for emulation.

Although a considerable effort has been done to assess the security of the booting

process of classic systems, the booting process of IoT devices has yet to be fully ex-

plored. Wojtczuk et al. studied how unprivileged code can exploit vulnerabilities and

design flaws to tamper with the SPI-flash content (containing the code that is first exe-

cuted when the CPU starts), completely breaking the chain-of-trust [140] in Intel sys-

tems. Kallenberg et al. achieved a similar goal by exploiting the update mechanisms

exposed by UEFI code [67]. Researchers have also shown how the chain-of-trust can

be broken on the Mac platform, using maliciously crafted Thunderbolt devices [58,59].

Other research focused on how Windows bootloader, built on top of UEFI, works and

how it can be exploited [16, 107]. Bazhaniuk et al., provided a comprehensive study of

the different types of vulnerabilities found in UEFI firmware and propose some mitiga-

223

Chapter 6. Related Work

tions [10], whereas Rutkowska presented an overview of the technologies available in

Intel processors, which can be used to enforce a trusted boot process [108].

BareDroid [88] proposes and implements modifications to the Android boot process

to build a large-scale bare-metal analysis system on Android devices. Although with a

different goal, in this work, the authors introduce some aspects related to ours, such as

difficulties in establishing a chain of trust in Android-based devices and how malware

could permanently brick a device. BOOTSTOMP expands and integrates their findings,

comparing different implementations and devices.

Companion Application Layer. Companion apps might compromise the security of

an IoT device. As these mobile applications are trusted by the IoT devices they interact

with, attackers can leverage that trust to attack the device. For instance, Sivaraman

et al. [118] showed how to use companion applications to collect information about

home devices connected to a local network, to ultimately make them accessible from

the Internet. Programming errors on companion apps might be dangerous too. For

instance, Max [64] showed how programming errors in companion apps can be used

to leak sensitive information about the IoT device, ultimately showing how to use this

information to harvest user credentials of the August Smart Lock.

However, researchers have recently been using companion apps mostly to assess

the security of IoT devices, as they contain unique information about the device [131]

224

Chapter 6. Related Work

and the necessary logic to produce well-formed input to ultimately fuzz the device

itself [21, 131].

Cloud Endpoint Layer. The cloud endpoints of an IoT device might contain protocol

flaws, or other security-related issues, that an attacker can use to compromise the tar-

geted IoT device. Cloud endpoints might dispose of insecure API that an attacker can

leverage to, for example, perform privilege escalation of a guest account on a targeted

device [64].

Furthermore, cloud endpoints might contain classic security-related issues, such as

cross-site-scripting vulnerabilities, never expiring cookies, and no brute force limitation

that would allow username enumeartion [61].

225

Chapter 7

Conclusions

In this dissertation, we presented novel approaches to improve the security of IoT

devices from different angles (i.e., finding bugs versus reducing the attack surface of a

program) and using different strategies (i.e., using static versus dynamic analyses). We

analyzed the different software components present in an IoT device (i.e., bootloaders,

OS, and user applications), and studied their peculiarities.

In particular, we analyzed modern mobile device bootloaders and showed that cur-

rent standards and guidelines are insufficient to guide developers toward creating secure

solutions. To study the impact of these design decisions, we implemented a static anal-

ysis approach, called BOOTSTOMP, which discovered six previously unknown memory

corruption vulnerabilities, as well as two unlock-bypass vulnerabilities.

Then, we studied how the different components of a firmware sample communicate

with each other to manage user requests, with particular emphasis on how different as-

sumptions on the data being shared can cause security vulnerabilities. We learned how

226

Chapter 7. Conclusions

tracking these inter-binary communications is of crucial importance to precisely un-

cover these vulnerabilities, and presented KARONTE, a tool that leverages novel static

analysis techniques to drastically reduce the false positives that traditional binary anal-

ysis techniques produce when analyzing real-world firmware. Our prototype produced

87 alerts (two orders of magnitude reduction over an approach not considering inter-

component interactions), among which we identified 46 previously unknown zero-day

bugs.

Next, we studied how to reduce the attack surface of a program when the source

code is not available. To this end, I presented a tool, called BINTRIMMER, which

uses a novel abstract domain, which we used to soundly identify and remove useless

code within binaries (such as firmware). On average, our tool was able to soundly

remove almost 36% of the code, which contained around the 25% of ROP gadgets of

the original program.

Finally, we studied the effectiveness of IoT device fuzzers. We found that randomly

fuzzing network packets sent to the devices requires knowledge about the data format

accepted by a device, which is seldom available when devices use custom firmware.

On the other hand, approaches that leverage the UI of the companion mobile app to

produce syntactically correct messages are ineffective because of the constraints that

the app-side code imposes. Conversely, we proposed a novel approach, called DIANE,

that sits in the sweet spot between network-level fuzzing and UI-level fuzzing. DIANE

227

Chapter 7. Conclusions

outperforms the current state-of-the-art approach, and it detected critical bugs (9 zero-

days) that cannot be triggered by existing fuzzers.

Overall, we evaluated the performance of the proposed approaches and show that

the developed tools are effective in improving the security of firmware for IoT devices.

228

Bibliography

[1] V. Afonso, A. Bianchi, Y. Fratantonio, A. Doupé, M. Polino, P. de Geus,
C. Kruegel, and G. Vigna. Going native: Using a large-scale analysis of an-
droid apps to create a practical native-code sandboxing policy. In The Network
and Distributed System Security Symposium, pages 1–15, 2016.

[2] Z.-W. Alliance. About Z-Wave Technology. https://z-
wavealliance.org/about z-wave technology/.

[3] O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose. Sok: Security evaluation
of home-based iot deployments. In Proceedings of the IEEE Symposium on
Security and Privacy, 2019.

[4] K. R. Apt. The essence of constraint propagation. Theoretical Computer Science,
221(1), 1999.

[5] ARM. ARM TrustZone. http://www.arm.com/products/
processors/technologies/trustzone/index.php, 2015.

[6] K. J. Ashton. That ‘internet of things’ thing. 1999.

[7] Attify. Jtag debugging. https://blog.attify.com/hack-iot-
device/.

[8] G. Balakrishnan and T. Reps. WYSINWYX: What you see is not what you
execute. ACM Trans. Program. Lang. Syst., 32(6):23:1–23:84, Aug. 2010.

[9] L. Bang, A. Aydin, and T. Bultan. Automatically Computing Path Complexity of
Programs. In Proc. of the Joint Meeting on Foundations of Software Engineering,
2015.

[10] O. Bazhaniuk, Y. Bulygin, A. Furtak, M. Gorobets, J. Loucaides, A. Matrosov,
and M. Shkatov. Attacking and Defending BIOS in 2015. In REcon, 2015.

229

https://z-wavealliance.org/about_z-wave_technology/
https://z-wavealliance.org/about_z-wave_technology/
http://www.arm.com/products/processors/technologies/trustzone/index.php
http://www.arm.com/products/processors/technologies/trustzone/index.php
https://blog.attify.com/hack-iot-device/
https://blog.attify.com/hack-iot-device/

Bibliography

[11] A. Bellissimo, J. Burgess, and K. Fu. Secure software updates: Disappointments
and new challenges. In HotSec, 2006.

[12] Bluetooth. Debugging Bluetooth With An Android App. https:
//blog.bluetooth.com/debugging-bluetooth-with-an-
android-app, 2016.

[13] Boofuzz. boofuzz: Network Protocol Fuzzing for Humans, successor to the
venerable Sulley fuzzing framework. https://github.com/jtpereyda/
boofuzz.

[14] E. Bou-Harb, C. Fachkha, M. Pourzandi, M. Debbabi, and C. Assi. Commu-
nication security for smart grid distribution networks. IEEE Communications
Magazine, 51(1):42–49, January 2013.

[15] D. L. Bruening. Efficient, Transparent, and Comprehensive Runtime Code Ma-
nipulation. PhD thesis, Cambridge, MA, USA, 2004. AAI0807735.

[16] Y. Bulygin, A. Furtak, and O. Bazhaniuk. A tale of one software bypass of
Windows 8 Secure Boot. Black Hat USA, 2013.

[17] J. Caballero and Z. Lin. Type inference on executables. ACM Computing Surveys
(CSUR), 48(4):65, 2016.

[18] C. Cadar and K. Sen. Symbolic Execution for Software Testing: Three Decades
Later. Communication of the ACM, 56(2), 2013.

[19] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley. Unleashing mayhem on
binary code. In Proceedings of the 2012 IEEE Symposium on Security and Pri-
vacy, SP ’12, San Jose, CA, USA, 2012.

[20] D. D. Chen, M. Woo, D. Brumley, and M. Egele. Towards automated dynamic
analysis for linux-based embedded firmware. In NDSS, 2016.

[21] J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. C. Lau, M. Sun, R. Yang,
and K. Zhang. Iotfuzzer: Discovering memory corruptions in iot through app-
based fuzzing. In Proc. of the ISOC Network and Distributed System Security
Symposium (NDSS), 2018.

[22] P. Chen, Y. Wang, Z. Xin, B. Mao, and L. Xie. Brick: A Binary Tool for Run-
Time Detecting and Locating Integer-Based Vulnerability. In Proc. of the Avail-
ability, Reliability and Security (ARES), 2009.

230

https://blog.bluetooth.com/debugging-bluetooth-with-an-android-app
https://blog.bluetooth.com/debugging-bluetooth-with-an-android-app
https://blog.bluetooth.com/debugging-bluetooth-with-an-android-app
https://github.com/jtpereyda/boofuzz
https://github.com/jtpereyda/boofuzz

Bibliography

[23] I. Clinton, L. Cook, and S. Banik. A survey of various methods for analyzing
the amazon echo (2016), 2018.

[24] L. Cojocar, J. Zaddach, R. Verdult, H. Bos, A. Francillon, and D. Balzarotti. PIE:
Parser Identification in Embedded Systems. In Proc. of the Annual Computer
Security Applications Conference (ACSAC), 2015.

[25] A. Continella, Y. Fratantonio, M. Lindorfer, A. Puccetti, A. Zand, C. Kruegel,
and G. Vigna. Obfuscation-resilient privacy leak detection for mobile apps
through differential analysis. In Proceedings of the ISOC Network and Dis-
tributed System Security Symposium (NDSS), San Diego, CA, February 2017.

[26] J. Corina, A. Machiry, C. Salls, Y. Shoshitaishvili, S. Hao, C. Kruegel, and
G. Vigna. Difuze: Interface aware fuzzing for kernel drivers. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Secu-
rity, pages 2123–2138. ACM, 2017.

[27] A. Costin, J. Zaddach, A. Francillon, D. Balzarotti, and S. Antipolis. A large-
scale analysis of the security of embedded firmwares. In USENIX Security Sym-
posium, pages 95–110, 2014.

[28] A. Costin, A. Zarras, and A. Francillon. Automated dynamic firmware analysis
at scale: A case study on embedded web interfaces. In Proceedings of the 11th
ACM on Asia Conference on Computer and Communications Security, ASIA
CCS ’16, pages 437–448, New York, NY, USA, 2016. ACM.

[29] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
Proceedings of the ACM SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languages, POPL’77, Los Angeles, California, 1977.

[30] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Proceedings of the ACM SIGACT-SIGPLAN Sym-
posium on Principles of Programming Languages, POPL’78, Tucson, Arizona,
1978.

[31] M. Cova, V. Felmetsger, G. Banks, and G. Vigna. Static Detection of Vulnerabil-
ities in x86 Executables. In Proc. of the Annual Computer Security Applications
Conference (ACSAC).

[32] A. Cui and S. J. Stolfo. A quantitative analysis of the insecurity of embedded
network devices: Results of a wide-area scan. In Proceedings of the 26th Annual

231

Bibliography

Computer Security Applications Conference, ACSAC ’10, pages 97–106, New
York, NY, USA, 2010. ACM.

[33] S. Datt. The information explosion: Trends in technology 2011 review. The
Journal of Government Financial Management, 2011.

[34] D. Davidson, B. Moench, T. Ristenpart, and S. Jha. Fie on firmware: Find-
ing vulnerabilities in embedded systems using symbolic execution. In USENIX
Security Symposium, pages 463–478, 2013.

[35] D. Dewey and J. T. Giffin. Static Detection of C++ Vtable Escape Vulnerabil-
ities in Binary Code. In Proc. of the Network and Distributed System Security
Symposium (NDSS), 2012.

[36] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al. A density-based algorithm for
discovering clusters in large spatial databases with noise. In Kdd, volume 96,
1996.

[37] S. Farahani. ZigBee Wireless Networks and Transceivers. Newnes, Newton, MA,
USA, 2008.

[38] J. Feist, L. Mounier, S. Bardin, R. David, and M.-L. Potet. Finding the Needle in
the Heap: Combining Static Analysis and Dynamic Symbolic Execution to Trig-
ger Use-After-Free. In Proc. of the Workshop on Software Security, Protection,
and Reverse Engineering (SSPREW), 2016.

[39] J. Feist, L. Mounier, and M.-L. Potet. Statically Detecting Use After Free on
Binary Code. Journal of Computer Virology and Hacking Techniques, 10(3),
2014.

[40] Frida. Frida: Dynamic instrumentation toolkit for developers, reverse-engineers,
and security researchers. https://frida.re/docs/android/.

[41] GitHub. ARM Trusted Firmware. https://github.com/ARM-
software/arm-trusted-firmware, 2017.

[42] D. Giusto, A. Iera, G. Morabito, and L. Atzori. The internet of things: 20th
Tyrrhenian workshop on digital communications. Springer Science & Business
Media, 2010.

[43] C. Gomez, J. Oller, and J. Paradells. Overview and evaluation of bluetooth low
energy: An emerging low-power wireless technology. Sensors, 12(9):11734–
11753, 2012.

232

https://frida.re/docs/android/
https://github.com/ARM-software/arm-trusted-firmware
https://github.com/ARM-software/arm-trusted-firmware

Bibliography

[44] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein. Reran: Timing-and touch-
sensitive record and replay for android. In Proceedings of the 2013 International
Conference on Software Engineering, pages 72–81. IEEE Press, 2013.

[45] Google. https://support.google.com/nexus/answer/
6172890?hl=en, 2016.

[46] Google. Verifying Boot. https://source.android.com/security/
verifiedboot/verified-boot.html, 2017.

[47] A. Gotlieb, M. Leconte, and B. Marre. Constraint Solving on Modular Integers.
In ModRef Worksop, associated to CP’2010, Saint-Andrews, United Kingdom,
Sept. 2010.

[48] P. Granger. Static analysis of arithmetical congruences. 30:165–190, 01 1989.

[49] GSMA. Anti-theft Device Feature Requirements, 2016.

[50] E. Gustafson, M. Muench, C. Spensky, N. Redini, A. Machiry, Y. Fratantonio,
D. Balzarotti, A. Francillon, Y. R. Choe, C. Kruegel, and G. Vigna. Toward the
analysis of embedded firmware through automated re-hosting. In 22nd Interna-
tional Symposium on Research in Attacks, Intrusions and Defenses (RAID 2019),
pages 135–150, Chaoyang District, Beijing, Sept. 2019. USENIX Association.

[51] M. Gyung Kang, S. McCamant, P. Poosankam, and D. Song. DTA++: Dynamic
Taint Analysis with Targeted Control-Flow Propagation. In Proc. of the Network
and Distributed System Security Symposium (NDSS), 2011.

[52] I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos. Dowsing for Over-
flows: A Guided Fuzzer to Find Buffer Boundary Violations. In Proc. of the
USENIX Security Symposium, 2013.

[53] L. C. Harris and B. P. Miller. Practical analysis of stripped binary code.
SIGARCH Comput. Archit. News, page 2005.

[54] C. Heffner. binwalk - firmware analysis tool designed to assist in the anal-
ysis, extraction, and reverse engineering of firmware images. https://
github.com/ReFirmLabs/binwalk, 2014.

[55] Hex-Rays. IDA Pro. https://www.hex-rays.com/products/ida/
index.shtml, 2017.

[56] T. Hickey, Q. Ju, and M. H. Van Emden. Interval arithmetic: From principles to
implementation. J. ACM, 48(5):1038–1068, Sept. 2001.

233

https://support.google.com/nexus/answer/6172890?hl=en
https://support.google.com/nexus/answer/6172890?hl=en
https://source.android.com/security/verifiedboot/verified-boot.html
https://source.android.com/security/verifiedboot/verified-boot.html
https://github.com/ReFirmLabs/binwalk
https://github.com/ReFirmLabs/binwalk
https://www.hex-rays.com/products/ida/index.shtml
https://www.hex-rays.com/products/ida/index.shtml

Bibliography

[57] M. Hind, M. Burke, P. Carini, and J.-D. Choi. Interprocedural pointer alias anal-
ysis. ACM Transactions on Programming Languages and Systems (TOPLAS),
21(4):848–894, 1999.

[58] T. Hudson, X. Kovah, and C. Kallenberg. ThunderStrike 2: Sith Strike. Black
Hat USA, 2015.

[59] T. Hudson and L. Rudolph. Thunderstrike: Efi firmware bootkits for apple mac-
books. In Proceedings of the 2015 ACM International Systems and Storage Con-
ference, SYSTOR ’15, New York, NY, USA, 2015.

[60] IBM. IBM X-Force: Stolen Credentials and Vulnerabilities Weaponized
Against Businesses in 2019. https://newsroom.ibm.com/
2020-02-11-IBM-X-Force-Stolen-Credentials-and-
Vulnerabilities-Weaponized-Against-Businesses-
in-2019? ga=2.223706392.2070857419.1601855701-
1259169858.1601855701.

[61] S. R. Inc. Hello barbie initial security analy-
sis. http://static1.squarespace.com/static/
543effd8e4b095fba39dfe59/t/56a66d424bf1187ad34383b2/
1453747529070/HelloBarbieSecurityAnalysis.pdf.

[62] B. Insider. Hackers once stole a casino’s high-roller database through a ther-
mometer in the lobby fish tank. https://www.businessinsider.de/
hackers-stole-a-casinos-database-through-a-
thermometer-in-the-lobby-fish-tank-2018-4?r=UK&IR=T,
2018.

[63] T. Instruments. Jtag fuse flow. https://e2e.ti.com/support/
microcontrollers/msp430/f/166/t/18936?JTAG-FUSE-BLOW.

[64] Jmaxxz. Backdooring the frontdoor. DEFCON, 2016.
https://doi.org/10.5446/36251.

[65] L. Jost. Entropy and diversity. Oikos, 113(2):363–375, 2006.

[66] Kali. bed - A network protocol fuzzer. https://tools.kali.org/
vulnerability-analysis/bed.

[67] C. Kallenberg, X. Kovah, J. Butterworth, and S. Cornwell. Extreme privilege
escalation on Windows 8/UEFI systems. BlackHat, Las Vegas, USA, 2014.

234

https://newsroom.ibm.com/2020-02-11-IBM-X-Force-Stolen-Credentials-and-Vulnerabilities-Weaponized-Against-Businesses-in-2019?_ga=2.223706392.2070857419.1601855701-1259169858.1601855701
https://newsroom.ibm.com/2020-02-11-IBM-X-Force-Stolen-Credentials-and-Vulnerabilities-Weaponized-Against-Businesses-in-2019?_ga=2.223706392.2070857419.1601855701-1259169858.1601855701
https://newsroom.ibm.com/2020-02-11-IBM-X-Force-Stolen-Credentials-and-Vulnerabilities-Weaponized-Against-Businesses-in-2019?_ga=2.223706392.2070857419.1601855701-1259169858.1601855701
https://newsroom.ibm.com/2020-02-11-IBM-X-Force-Stolen-Credentials-and-Vulnerabilities-Weaponized-Against-Businesses-in-2019?_ga=2.223706392.2070857419.1601855701-1259169858.1601855701
https://newsroom.ibm.com/2020-02-11-IBM-X-Force-Stolen-Credentials-and-Vulnerabilities-Weaponized-Against-Businesses-in-2019?_ga=2.223706392.2070857419.1601855701-1259169858.1601855701
http://static1.squarespace.com/static/543effd8e4b095fba39dfe59/t/56a66d424bf1187ad34383b2/1453747529070/HelloBarbieSecurityAnalysis.pdf
http://static1.squarespace.com/static/543effd8e4b095fba39dfe59/t/56a66d424bf1187ad34383b2/1453747529070/HelloBarbieSecurityAnalysis.pdf
http://static1.squarespace.com/static/543effd8e4b095fba39dfe59/t/56a66d424bf1187ad34383b2/1453747529070/HelloBarbieSecurityAnalysis.pdf
https://www.businessinsider.de/hackers-stole-a-casinos-database-through-a-thermometer-in-the-lobby-fish-tank-2018-4?r=UK&IR=T
https://www.businessinsider.de/hackers-stole-a-casinos-database-through-a-thermometer-in-the-lobby-fish-tank-2018-4?r=UK&IR=T
https://www.businessinsider.de/hackers-stole-a-casinos-database-through-a-thermometer-in-the-lobby-fish-tank-2018-4?r=UK&IR=T
https://e2e.ti.com/support/microcontrollers/msp430/f/166/t/18936?JTAG-FUSE-BLOW
https://e2e.ti.com/support/microcontrollers/msp430/f/166/t/18936?JTAG-FUSE-BLOW
https://tools.kali.org/vulnerability-analysis/bed
https://tools.kali.org/vulnerability-analysis/bed

Bibliography

[68] Katyusha. Katyusha rest and soap fuzzer. https://github.com/
lpredova/Katyusha.

[69] R. Katzev. Car sharing: A new approach to urban transportation problems. Anal-
yses of Social Issues and Public Policy, 3(1):65–86, 2003.

[70] V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D. Keromytis. libdft: Practical
Dynamic Data Flow Tracking for Commodity Systems. In Proc. of the ACM
SIGPLAN/SIGOPS conference on Virtual Execution Environments, 2012.

[71] M. E. Khan, F. Khan, et al. A Comparative Study of White Box, Black Box
and Grey Box Testing Techniques. International Journal of Advanced Computer
Sciences and Applications, 3(6), 2012.

[72] P. Kintis, Y. Nadji, D. Dagon, M. Farrell, and M. Antonakakis. Understanding
the privacy implications of ecs. In International Conference on Detection of In-
trusions and Malware, and Vulnerability Assessment, pages 343–353. Springer,
2016.

[73] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas. Ddos in the iot: Mirai and
other botnets. Computer, 50(7):80–84, 2017.

[74] K. Koscher, T. Kohno, and D. Molnar. Surrogates: Enabling near-real-time dy-
namic analyses of embedded systems. In WOOT, 2015.

[75] U. W. Kulisch. Complete Interval Arithmetic and Its Implementation on the
Computer. In Numerical Validation in Current Hardware Architectures: Inter-
national Dagstuhl Seminar, Dagstuhl Castle, Germany, January 6-11, 2008. Re-
vised Papers, pages 7–26. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[76] K. Lady. Sixty Percent of Enterprise Android Phones Affected by Critical
QSEE Vulnerability. https://duo.com/blog/sixty-percent-of-
enterprise-android-phones-affected-by-critical-qsee-
vulnerability, 2016.

[77] D. Larochelle, D. Evans, et al. Statically Detecting Likely Buffer Overflow Vul-
nerabilities. In Proc. of the USENIX Security Symposium, 2001.

[78] J. Lau, B. Zimmerman, and F. Schaub. Alexa, are you listening?: Privacy percep-
tions, concerns and privacy-seeking behaviors with smart speakers. Proceedings
of the ACM on Human-Computer Interaction, 2(CSCW):102, 2018.

235

https://github.com/lpredova/Katyusha
https://github.com/lpredova/Katyusha
https://duo.com/blog/sixty-percent-of-enterprise-android-phones-affected-by-critical-qsee-vulnerability
https://duo.com/blog/sixty-percent-of-enterprise-android-phones-affected-by-critical-qsee-vulnerability
https://duo.com/blog/sixty-percent-of-enterprise-android-phones-affected-by-critical-qsee-vulnerability

Bibliography

[79] J. Lee, T. Avgerinos, and D. Brumley. TIE: Principled reverse engineering of
types in binary programs. In Proceedings of the Network and Distributed Sys-
tems Security, NDSS ’11, San Diego, CA, USA, 2011.

[80] K. Lee, Y. Lee, H. Lee, and K. Yim. A brief review on jtag security. In 2016
10th International Conference on Innovative Mobile and Internet Services in
Ubiquitous Computing (IMIS), pages 486–490, July 2016.

[81] J. Lerch, B. Hermann, E. Bodden, and M. Mezini. FlowTwist: Efficient Context-
sensitive Inside-out Taint Analysis for Large Codebases. In Proc. of the ACM
SIGSOFT International Symposium on Foundations of Software Engineering
(FSE), 2014.

[82] G.-H. Liu, G. Wu, Z. Tao, J.-M. Shuai, and Z.-C. Tang. Vulnerability analysis
for x86 executables using genetic algorithm and fuzzing. In Proceedings of the
2008 Convergence and Hybrid Information Technology, volume 2 of ICCIT ’08,
pages 491–497. IEEE, 2008.

[83] Micron Technologies. eMMC Security Features, 2016.

[84] J. Ming, D. Wu, G. Xiao, J. Wang, and P. Liu. TaintPipe: Pipelined Symbolic
Taint Analysis. In Proc. of the USENIX Conference on Security Symposium,
2015.

[85] Mitre. LK bootloader security vulnerability, CVE-2014-9798. https://
cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-9798.

[86] M. Muench, J. Stijohann, F. Kargl, A. Francillon, and D. Balzarotti. What you
corrupt is not what you crash: Challenges in fuzzing embedded devices. In Proc.
of the ISOC Network and Distributed System Security Symposium (NDSS).

[87] M. Muench, J. Stijohann, F. Kargl, A. Francillon, and D. Balzarotti. What You
Corrupt Is Not What You Crash: Challenges in Fuzzing Embedded Devices. In
Proc. of the Network and Distributed System Security Symposium (NDSS), 2018.

[88] S. Mutti, Y. Fratantonio, A. Bianchi, L. Invernizzi, J. Corbetta, D. Kirat,
C. Kruegel, and G. Vigna. Baredroid: Large-scale analysis of android apps on
real devices. In Proceedings of the 2015 Annual Computer Security Applications
Conference, ACSAC 2015, New York, NY, USA, 2015.

[89] J. A. Navas, P. Schachte, H. Søndergaard, and P. J. Stuckey. Signedness-agnostic
program analysis: Precise integer bounds for low-level code. In Programming
Languages and Systems, pages 115–130. Springer, 2012.

236

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-9798
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-9798

Bibliography

[90] N. Neshenko, E. Bou-Harb, J. Crichigno, G. Kaddoum, and N. Ghani. Demysti-
fying iot security: An exhaustive survey on iot vulnerabilities and a first empir-
ical look on internet-scale iot exploitations. IEEE Communications Surveys &
Tutorials, 04 2019.

[91] N. Nethercote and J. Seward. Valgrind: A framework for heavyweight dynamic
binary instrumentation. Proceedings of the 28th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’07), 42(6):89–100,
June 2007.

[92] M. Neugschwandtner, P. Milani Comparetti, I. Haller, and H. Bos. The borg:
Nanoprobing binaries for buffer overreads. In Proceedings of the 2015 ACM
Conference on Data and Application Security and Privacy, CODASPY ’15,
pages 87–97, New York, NY, USA, 2015. ACM.

[93] J. Newsome. Dynamic taint analysis for automatic detection, analysis, and sig-
nature generation of exploits on commodity software. In Proc. of the Network
and Distributed System Security Symposium (NDSS), 2005.

[94] F. Nielson, H. Riis Nielson, and C. Hankin. Principles of Program Analysis. 01
1999.

[95] A. Outler. Have you paid your linux kernel source license fee?
https://www.xda-developers.com/have-you-paid-your-
linux-kernel-source-license-fee/, March 2013.

[96] K. U. P. W. M. O. P. K. U. P. C. J. O. K. U. S. M. C. S. K. U. Paczkowski, Lyle
W. (Mission Hills. Jtag fuse vulnerability determination and protection using a
trusted execution environment, April 2015.

[97] J. Palsberg and M. I. Schwartzbach. Object-oriented type inference, volume 26.
ACM, 1991.

[98] P. Pokorny and M. Royal. Dumb fuzzing in practice. 2012.

[99] D. I. Program. Internet Protocol. https://tools.ietf.org/html/
rfc791.

[100] F. Qin, C. Wang, Z. Li, H.-s. Kim, Y. Zhou, and Y. Wu. Lift: A low-overhead
practical information flow tracking system for detecting security attacks. In Proc.
of the Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO), 2006.

237

https://www.xda-developers.com/have-you-paid-your-linux-kernel-source-license-fee/
https://www.xda-developers.com/have-you-paid-your-linux-kernel-source-license-fee/
https://tools.ietf.org/html/rfc791
https://tools.ietf.org/html/rfc791

Bibliography

[101] Qualcomm. (L)ittle (K)ernel based Android bootloader. https:
//www.codeaurora.org/blogs/little-kernel-based-
android-bootloader.

[102] D. A. Ramos and D. Engler. Under-constrained symbolic execution: Correctness
checking for real code. In Proceedings of the 2015 USENIX Conference on
Security Symposium, SEC’15, Washington, DC, USA, 2015.

[103] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos. Vuzzer:
Application-aware evolutionary fuzzing. In Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2017.

[104] S. Rawat and L. Mounier. Offset-Aware Mutation Based Fuzzing for Buffer
Overflow Vulnerabilities: Few Preliminary Results. In Proc. of the Software
Testing, Verification and Validation Workshops (ICSTW), 2011.

[105] S. Rawat, L. Mounier, and M.-L. Potet. Static taint-analysis on binary executa-
bles, 2011.

[106] F. Riggins and S. Fosso Wamba. Research directions on the adoption, usage and
impact of the internet of things through the use of big data analytics. volume
2015, 01 2015.

[107] rol. ring of lightning. https://rol.im/securegoldenkeyboot/, 2016.

[108] J. Rutkowska. Intel x86 considered harmful, 2015.

[109] M. Ryan. Bluetooth smart: The good, the bad, the ugly... and the fix. BlackHat
USA, Las Vegas, USA, 2013.

[110] J. Samuel, N. Mathewson, J. Cappos, and R. Dingledine. Survivable key com-
promise in software update systems. In Proceedings of the 17th ACM conference
on Computer and communications security, pages 61–72. ACM, 2010.

[111] E. J. Schwartz, T. Avgerinos, and D. Brumley. All You Ever Wanted to Know
About Dynamic Taint Analysis and Forward Symbolic Execution (but Might
Have Been Afraid to Ask). In Proc. of the IEEE Symposium on Security and
Privacy (S&P), 2010.

[112] SecuriTeam. BSS (Bluetooth Stack Smasher) Fuzzer. https://
securiteam.com/tools/5NP0220HPE/.

[113] J. Selvi. Bypassing http strict transport security. Black Hat Europe, 2014.

238

https://www.codeaurora.org/blogs/little-kernel-based-android-bootloader
https://www.codeaurora.org/blogs/little-kernel-based-android-bootloader
https://www.codeaurora.org/blogs/little-kernel-based-android-bootloader
https://rol.im/securegoldenkeyboot/
https://securiteam.com/tools/5NP0220HPE/
https://securiteam.com/tools/5NP0220HPE/

Bibliography

[114] R. Sen and Y. N. Srikant. Executable Analysis using Abstract Interpretation
with Circular Linear Progressions. Formal Methods and Models for Co-Design,
ACM/IEEE International Conference on, 00(undefined):39–48, 2007.

[115] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna. Firmalice-
automatic detection of authentication bypass vulnerabilities in binary firmware.
In NDSS, 2015.

[116] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher,
J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna. SoK: (State of) The
Art of War: Offensive Techniques in Binary Analysis. In Proc. of the IEEE
Symposium on Security and Privacy (SP), 2016.

[117] A. Simon. Value-Range Analysis of C Programs: Towards Proving the Absence
of Buffer Overflow Vulnerabilities. Springer Science & Business Media, 1 edi-
tion, 2010.

[118] V. Sivaraman, D. Chan, D. Earl, and R. Boreli. Smart-phones attacking smart-
homes. In Proceedings of the 9th ACM Conference on Security & Privacy in
Wireless and Mobile Networks, WiSec ’16, pages 195–200, New York, NY, USA,
2016. ACM.

[119] P. Srivastava, H. Peng, J. Li, H. Okhravi, H. Shrobe, and M. Payer. FirmFuzz:
Automated IoT Firmware Introspection and Analysis. In Proc. ACM CCS Work-
shop on IoT Security and Privacy (IoT S&P), 2019.

[120] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta, Y. Shoshi-
taishvili, C. Kruegel, and G. Vigna. Driller: Augmenting Fuzzing Through Se-
lective Symbolic Execution. In Proceedings of the 2016 Network and Distributed
System Security Symposium, NDSS ’16, San Diego, CA, USA, 2016.

[121] R. Uehara and Y. Uno. Efficient Algorithms for the Longest Path Problem. In
Proc. International Symposium on Algorithms and Computation (ISAAC), 2005.

[122] UFuzz. UFuzz, or Universal Plug and Fuzz, is an automatic UPnP fuzzing tool.
https://github.com/phikshun/ufuzz.

[123] Vaas, Lisa. Smartphone anti-theft “kill switch” law goes into effect in California,
2015.

[124] R. Vallée-Rai, E. Gagnon, L. Hendren, P. Lam, P. Pominville, and V. Sundaresan.
Optimizing java bytecode using the soot framework: Is it feasible? In Interna-
tional conference on compiler construction, pages 18–34. Springer, 2000.

239

https://github.com/phikshun/ufuzz

Bibliography

[125] N. Vidgren, K. Haataja, J. Patino-Andres, J. Ramirez-Sanchis, and P. Toivanen.
Security threats in zigbee-enabled systems: Vulnerability evaluation, practical
experiments, countermeasures, and lessons learned. In 2014 47th Hawaii Inter-
national Conference on System Sciences, pages 5132–5138, Los Alamitos, CA,
USA, jan 2013. IEEE Computer Society.

[126] VxWorks. VxWorks, the industry’s leading real-time operating system. https:
//www.windriver.com/products/vxworks/.

[127] R. Wang, Y. Shoshitaishvili, A. Bianchi, A. Machiry, J. Grosen, P. Grosen,
C. Kruegel, and G. Vigna. Ramblr: Making reassembly great again. In Pro-
ceedings of the Network and Distributed System Security Symposium, NDSS’17,
San Diego, CA, USA, 2017.

[128] S. Wang, P. Wang, and D. Wu. Reassembleable disassembling. In Proceedings
of the 2015 USENIX Conference on Security Symposium, SEC’15, Washington,
DC, USA, 2015.

[129] T. Wang, T. Wei, Z. Lin, and W. Zou. IntScope: Automatically Detecting Integer
Overflow Vulnerability in X86 Binary Using Symbolic Execution. In Proc. of
the Network and Distributed System Security Symposium (NDSS), 2009.

[130] X. Wang, Y.-C. Jhi, S. Zhu, and P. Liu. Still: Exploit code detection via static
taint and initialization analyses. In Proceedings of the 2008 Annual Computer
Security Applications Conference, ACSAC ’08, Anaheim, CA, USA, 2008.

[131] X. Wang, Y. Sun, S. Nanda, and X. Wang. Looking from the mirror: Evaluating
iot device security through mobile companion apps. In 28th USENIX Security
Symposium (USENIX Security 19), pages 1151–1167, Santa Clara, CA, Aug.
2019. USENIX Association.

[132] Z. Wang, X. Jiang, W. Cui, X. Wang, and M. Grace. Reformat: Automatic
reverse engineering of encrypted messages. In M. Backes and P. Ning, editors,
Computer Security – ESORICS 2009, pages 200–215, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg.

[133] Z. Wang, Y. Zhang, and Q. Liu. Rpfuzzer: A framework for discovering router
protocols vulnerabilities based on fuzzing. KSII Transactions on Internet & In-
formation Systems, 7(8), 2013.

[134] H. S. J. Warren. Hacker’s Delight. Addison-Wesley, Boston, Toronto, London,
2003.

240

https://www.windriver.com/products/vxworks/
https://www.windriver.com/products/vxworks/

Bibliography

[135] M. web docs. 500 internal server error. https://
developer.mozilla.org/en-US/docs/Web/HTTP/Status/500.

[136] H. Wen, Q. Zhao, Q. A. Chen, and Z. Lin. Automated Cross-Platform Reverse
Engineering of CAN Bus Commands From Mobile Apps. In Proceedings of the
ISOC Network and Distributed System Security Symposium (NDSS), 2020.

[137] D. B. West. Introduction to graph theory, volume 2. Prentice hall Upper Saddle
River, NJ, 1996.

[138] T. Wilson. Evaluation of fuzzing as a test method for an embedded system. 2018.

[139] Wired. A Legion of Bugs Puts Hundreds of Millions of IoT De-
vices at Risk. https://www.wired.com/story/ripple20-iot-
vulnerabilities/.

[140] R. Wojtczuk and C. Kallenberg. Attacking UEFI boot script. In 31st Chaos
Communication Congress (31C3), 2014.

[141] Wsfuzzer. Web services fuzzing tool for http and soap. https://
sourceforge.net/projects/wsfuzzer/files/.

[142] J. Wurm, K. Hoang, O. Arias, A. Sadeghi, and Y. Jin. Security analysis on
consumer and industrial iot devices. In 2016 21st Asia and South Pacific Design
Automation Conference (ASP-DAC), pages 519–524, Jan 2016.

[143] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda. Panorama: Capturing
System-wide Information Flow for Malware Detection and Analysis. In Proc.
of the ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2007.

[144] R. Yonck. Connecting with our connected world. The Futurist, 2013.

[145] J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti. Avatar: A framework to
support dynamic security analysis of embedded systems’ firmwares. In NDSS,
2014.

[146] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi. Internet of things
for smart cities. IEEE Internet of Things Journal, 1(1):22–32, Feb 2014.

[147] M. Zhang, R. Qiao, N. Hasabnis, and R. Sekar. A platform for secure static
binary instrumentation.

241

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/500
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/500
https://www.wired.com/story/ripple20-iot-vulnerabilities/
https://www.wired.com/story/ripple20-iot-vulnerabilities/
https://sourceforge.net/projects/wsfuzzer/files/
https://sourceforge.net/projects/wsfuzzer/files/

Bibliography

[148] N. Zhang, S. Demetriou, X. Mi, W. Diao, K. Yuan, P. Zong, F. Qian, X. Wang,
K. Chen, Y. Tian, et al. Understanding iot security through the data crys-
tal ball: Where we are now and where we are going to be. arXiv preprint
arXiv:1703.09809, 2017.

[149] Q. Zhao, C. Zuo, D.-G. Brendan, G. Pellegrino, and Z. Lin. Automatic uncover-
ing of hidden behaviors from input validation in mobile apps. 2020.

[150] Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun. Firm-afl: High-
throughput greybox fuzzing of iot firmware via augmented process emulation.
In 28th USENIX Security Symposium (USENIX Security 19), pages 1099–1114,
Santa Clara, CA, Aug. 2019. USENIX Association.

[151] W. Zhou, Y. Jia, Y. Yao, L. Zhu, L. Guan, Y. Mao, P. Liu, and Y. Zhang. Dis-
covering and understanding the security hazards in the interactions between iot
devices, mobile apps, and clouds on smart home platforms. In 28th USENIX
Security Symposium (USENIX Security 19), pages 1133–1150, Santa Clara, CA,
Aug. 2019. USENIX Association.

[152] D. Y. Zhu, J. Jung, D. Song, T. Kohno, and D. Wetherall. TaintEraser: Protecting
Sensitive Data Leaks Using Application-level Taint Tracking. ACM SIGOPS
Operating Systems Review, 45(1), 2011.

242

	Acknowledgements
	Curriculum Vitæ
	Abstract
	List of Figures
	List of Tables
	Introduction
	Security of IoT devices

	BootStomp: A Bootloader Analyzer
	Bootloaders in Theory
	TEEs and TrustZone
	The Trusted Boot Process
	Verified Boot on Android

	Bootloaders in Practice
	Bootloader Implementations

	Unlocking Bootloaders
	Unlocking vs Anti-Theft

	Attacking Bootloaders
	BootStomp
	Design
	Seed Identification
	Sink Identification
	Taint Tracking

	Evaluation
	Dataset
	Finding Memory Corruption
	Analyzing (In)Secure State Storage
	Discussion

	Mitigations

	Karonte: Detecting Insecure Multi-binary Interactions in Embedded Firmware
	IoT Attacker Model
	Firmware Complexity
	IPC in IoT Firmware
	Karonte
	Border Binaries Discovery
	Binary Dependency Graph
	Communication Paradigm Finders
	Building the BDG

	Static Taint Analysis
	Multi-binary Data-flow Analysis
	Insecure Interactions Detection
	Karonte Implementaion Details
	Functions Identification
	Border Binaries Discovery
	Communication Paradigm Finders
	Binary Dependency Graph Algorithm
	Static Taint Analysis
	Multi-binary Data-flow Analysis
	Vulnerability Example
	Discussion
	Evaluation
	Datasets
	Border Binaries Discovery
	Binary Dependency Graph
	Insecure Interactions Detection
	Comparative Evaluation
	Large-scale Scalability Assessment
	Verifiability

	Bintrimmer: Towards Static Binary Debloating Through Abstract Interpretation
	Background and Motivation
	Overview
	Iterative CFG Refinement
	Program Debloating

	Signedness-Agnostic Strided Intervals
	Definition

	Termination
	Signedness-Agnostic Strided Interval Operations
	Addition and Subtraction
	Multiplication, Division and Modulus
	Bitwise operations
	Truncate
	Extension operations

	Discussion
	Evaluation
	Signedness-Agnostic Strided Intervals
	Bintrimmer

	Diane: Identifying Fuzzing Triggers in Apps to Generate Under-constrained Inputs for IoT Devices
	Motivation
	Diane
	Fuzzing Trigger Identification
	Fuzzing

	Diane Implementation Details
	Static Analysis
	Dynamic Analysis
	Hybrid Analysis

	Experimental Evaluation
	Dataset & Environment Setup
	Fuzzing Trigger Identification
	Vulnerability Finding
	Diane vs. IoTFuzzer
	App-side Sanitization and Fuzzing Triggers
	Diane vs. Network-Level Fuzzing
	Case Study: Insteon HD Wifi Camera
	Runtime Performance
	Quantifying Required Human Effort

	Limitations and Future Work

	Related Work
	Conclusions
	Bibliography

